Symptom dimensions are associated with reward processing in unmedicated persons at risk for psychosis

Diana Wotruba, Karsten Heekeren, Lars Michels, Roman Buechler, Joe J Simon, Anastasia Theodoridou, Spyros Kollias, Wulf Rössler, Stefan Kaiser, Diana Wotruba, Karsten Heekeren, Lars Michels, Roman Buechler, Joe J Simon, Anastasia Theodoridou, Spyros Kollias, Wulf Rössler, Stefan Kaiser

Abstract

There is growing evidence that reward processing is disturbed in schizophrenia. However, it is uncertain whether this dysfunction predates or is secondary to the onset of psychosis. Studying 21 unmedicated persons at risk for psychosis plus 24 healthy controls (HCs) we used a incentive delay paradigm with monetary rewards during functional magnetic resonance imaging. During processing of reward information, at-risk individuals performed similarly well to controls and recruited the same brain areas. However, while anticipating rewards, the high-risk sample exhibited additional activation in the posterior cingulate cortex, and the medio- and superior frontal gyrus, whereas no significant group differences were found after rewards were administered. Importantly, symptom dimensions were differentially associated with anticipation and outcome of the reward. Positive symptoms were correlated with the anticipation signal in the ventral striatum (VS) and the right anterior insula (rAI). Negative symptoms were inversely linked to outcome-related signal within the VS, and depressive symptoms to outcome-related signal within the medial orbitofrontal cortex (mOFC). Our findings provide evidence for a reward-associated dysregulation that can be compensated by recruitment of additional prefrontal areas. We propose that stronger activations within VS and rAI when anticipating a reward reflect abnormal processing of potential future rewards. Moreover, according to the aberrant salience theory of psychosis, this may predispose a person to positive symptoms. Additionally, we report evidence that negative and depressive symptoms are differentially associated with the receipt of a reward, which might demonstrate a broader vulnerability to motivational and affective symptoms in persons at-risk for psychosis.

Keywords: anterior insula; at-risk mental state; dopamine; functional magnetic resonance imaging (fMRI); psychosis; reward; salience processing; ventral striatum.

Figures

Figure 1
Figure 1
Monetary incentive delay task: Example trial and cues representing possible reward outcomes. Participants first saw a cue stipulating with an unpredictable probability the amount of money (4 CHF or 0 CHF) they could win, if they reacted correctly within 750 ms during the ensuing discrimination task, which involved pressing either a left or right button depending upon the direction of a triangle after an anticipation period (variable delay: 2500–3500 ms, mean of 3000 ms). Immediately after target presentation, subjects were informed about the amount of money they had won during this trial and their cumulative total win so far (feedback) for a total of 1500 ms (Abler et al., 2005). The jittered inter-trial interval (ITI) was between 1000 and 8000 ms with a mean of 4000 ms. Trial types were randomly ordered.
Figure 2
Figure 2
Whole-brain group comparison of the contrast reward anticipation vs. no reward anticipation. Subjects at risk for psychosis showed significantly stronger hemodynamic response compared to healthy controls in the posterior cingulate cortex, superior frontal gyrus, and bilateral medio frontal gyrus (corresponding t-values are represented in orange/yellow).
Figure 3
Figure 3
Associations between regions of interest (ROI) and severity of positive symptoms during anticipation of reward. ROIs (depicted in cyan) are overlaid on within-group t-maps for subjects at risk for psychosis (A) for the contrast reward anticipation vs. no reward anticipation (shown in orange, both at a voxel-wise threshold p < 0.001, with an extent of 20 voxels). ROI-based analysis revealed significant association between contrast estimates of the left and right ventral striatum (VS) (A1, A2) and right anterior insula (rAI) (A3) with positive symptom scores (ρ > 0.52, p < 0.015).
Figure 4
Figure 4
Associations among regions of interest (ROIs), clinical symptoms, and reaction time (RT) to cues with possible reward during outcome. ROIs (depicted in cyan) are overlaid on the within-group t-map for subjects at risk for psychosis (A) for the contrast receipt of reward vs. omission of reward (shown in orange, both at a voxel wise threshold of p < 0.001, with an extent of 20 voxels). ROI-based analysis revealed a negative association between contrast estimates within the medio orbitofrontal cortex and severity of depressive symptoms (B1), and the left VS and severity of negative symptoms (B2) (ρ > −0.44, p < 0.045). (C) Signal in the left VS revealed a significant inverse association with RT in healthy controls (blue; ρ = −0.42, p = 0.04) but not for subjects at risk for psychosis (red; ρ = −0.18, p = 0.43).

References

    1. Abler B., Walter H., Erk S. (2005). Neural correlates of frustration. Neuroreport 16, 669–672. 10.1097/00001756-200505120-00003
    1. Addington D., Addington J., Maticka-Tyndale E. (1993). Assessing depression in schizophrenia: the Calgary Depression Scale. Br. J. Psychiatry Suppl. 39–44.
    1. Berridge K. C., Robinson T. E., Aldridge J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’ and learning. Curr. Opin. Pharmacol. 9, 65–73. 10.1016/j.coph.2008.12.014
    1. Bromberg-Martin E. S., Matsumoto M., Hikosaka O. (2010). Dopamine in motivational control: rewarding, aversive and alerting. Neuron 68, 815–834. 10.1016/j.neuron.2010.11.022
    1. Demjaha A., Valmaggia L., Stahl D., Byrne M., McGuire P. (2012). Disorganization/cognitive and negative symptom dimensions in the at-risk mental state predict subsequent transition to psychosis. Schizophr. Bull. 38, 351–359. 10.1093/schbul/sbq088
    1. Deserno L., Sterzer P., Wüstenberg T., Heinz A., Schlagenhauf F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J. Neurosci. 32, 12–20. 10.1523/JNEUROSCI.3405-11.2012
    1. Dillon D. G., Holmes A. J., Jahn A. L., Bogdan R., Wald L. L., Pizzagalli D. A. (2008). Dissociation of neural regions associated with anticipatory versus consummatory phases of incentive processing. Psychophysiology 45, 36–49. 10.1111/j.1469-8986.2007.00594.x
    1. Esslinger C., Englisch S., Inta D., Rausch F., Schirmbeck F., Mier D., et al. . (2012). Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophr. Res. 140, 114–121. 10.1016/j.schres.2012.06.025
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U S A 102, 9673–9678. 10.1073/pnas.0504136102
    1. Friston K. J., Holmes A. P., Worsley K. J., Poline J.-P., Frith C. D., Frackowiak R. S. J. (1994). Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 10.1002/hbm.460020402
    1. Fusar-Poli P., Deste G., Smieskova R., Barlati S., Yung A. R., Howes O., et al. . (2012). Cognitive functioning in prodromal psychosis: a meta-analysis. Arch. Gen. Psychiatry 69, 562–571. 10.1001/archgenpsychiatry.2011.1592
    1. Grabenhorst F., Rolls E. T. (2011). Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn. Sci. 15, 56–67. 10.1016/j.tics.2010.12.004
    1. Gradin V. B., Kumar P., Waiter G., Ahearn T., Stickle C., Milders M., et al. . (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134, 1751–1764. 10.1093/brain/awr059
    1. Grimm O., Heinz A., Walter H., Kirsch P., Erk S., Haddad L., et al. . (2014). Striatal response to reward anticipation: evidence for a systems-level intermediate phenotype for schizophrenia. JAMA Psychiatry 71, 531–539. 10.1001/jamapsychiatry.2014.9
    1. Guitart-Masip M., Fuentemilla L., Bach D. R., Huys Q. J. M., Dayan P., Dolan R. J., et al. . (2011). Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. J. Neurosci. 31, 7867–7875. 10.1523/JNEUROSCI.6376-10.2011
    1. Heinz A., Schlagenhauf F. (2010). Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophr. Bull. 36, 472–485. 10.1093/schbul/sbq031
    1. Horn W. (1983). LPS: Leistungsprüfsystem. 2nd Edn. Göttingen: Hogrefe.
    1. Howes O. D., Bose S. K., Turkheimer F., Valli I., Egerton A., Valmaggia L. R., et al. . (2011). Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am. J. Psychiatry 168, 1311–1317. 10.1176/appi.ajp.2011.11010160
    1. Howes O. D., Kapur S. (2009). The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr. Bull. 35, 549–562. 10.1093/schbul/sbp006
    1. Howes O. D., Montgomery A. J., Asselin M.-C., Murray R. M., Valli I., Tabraham P., et al. . (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry 66, 13–20. 10.1001/archgenpsychiatry.2008.514
    1. Jensen J., Willeit M., Zipursky R. B., Savina I., Smith A. J., Menon M., et al. . (2008). The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33, 473–479. 10.1038/sj.npp.1301437
    1. Juckel G., Friedel E., Koslowski M., Witthaus H., Ozgürdal S., Gudlowski Y., et al. . (2012). Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology 66, 50–56. 10.1159/000337130
    1. Juckel G., Schlagenhauf F., Koslowski M., Wüstenberg T., Villringer A., Knutson B., et al. . (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29, 409–416. 10.1016/j.neuroimage.2005.07.051
    1. Kahnt T., Tobler P. N. (2013). Salience signals in the right temporoparietal junction facilitate value-based decisions. J. Neurosci. 33, 863–869. 10.1523/JNEUROSCI.3531-12.2013
    1. Kapur S., Mizrahi R., Li M. (2005). From dopamine to salience to psychosis—linking biology, pharmacology and phenomenology of psychosis. Schizophr. Res. 79, 59–68. 10.1016/j.schres.2005.01.003
    1. Knutson B., Adams C. M., Fong G. W., Hommer D. (2001a). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159.
    1. Knutson B., Fong G. W., Adams C. M., Varner J. L., Hommer D. (2001b). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12, 3683–3687. 10.1097/00001756-200112040-00016
    1. Knutson B., Greer S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3771–3786. 10.1098/rstb.2008.0155
    1. Krebs R. M., Boehler C. N., Roberts K. C., Song A. W., Woldorff M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb. Cortex 22, 607–615. 10.1093/cercor/bhr134
    1. Kringelbach M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702. 10.1038/nrn1747
    1. Lehrl S. (2005). Mehrfachwahl-Wortschatz-Intelligenztest MWT-B. 5th Edn. Balingen: Spitta Verlag.
    1. Lin A., Nelson B., Yung A. R. (2012). ‘At-risk’ for psychosis research: where are we heading? Epidemiol. Psychiatr. Sci. 21, 329–334. 10.1017/S2045796012000388
    1. McCabe C., Cowen P. J., Harmer C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology (Berl) 205, 667–677. 10.1007/s00213-009-1573-9
    1. Miller T. J., McGlashan T. H., Rosen J. L., Cadenhead K., Cannon T., Ventura J., et al. . (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: predictive validity, interrater reliability and training to reliability. Schizophr. Bull. 29, 703–715. 10.1093/oxfordjournals.schbul.a007040
    1. Morris R. W., Vercammen A., Lenroot R., Moore L., Langton J. M., Short B., et al. . (2012). Disambiguating ventral striatum fMRI-related BOLD signal during reward prediction in schizophrenia. Mol. Psychiatry 17, 235, 280–289. 10.1038/mp.2011.75
    1. Nielsen F. A., Hansen L. K. (2002). “Automatic anatomical labeling of Talairach coordinates and generation of volumes of interest via the BrainMap database,” in Presented at the 8th International Conference on Functional Mapping of the Human Brain (San Diego, California: Academic Press; ), 1–2.
    1. Nielsen M. Ø., Rostrup E., Wulff S., Bak N., Lublin H., Kapur S., et al. . (2012). Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol. Psychiatry 71, 898–905. 10.1016/j.biopsych.2012.02.007
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Palaniyappan L., Liddle P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J. Psychiatry Neurosci. 37, 17–27. 10.1503/jpn.100176
    1. Pizzagalli D. A., Holmes A. J., Dillon D. G., Goetz E. L., Birk J. L., Bogdan R., et al. . (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am. J. Psychiatry 166, 702–710. 10.1176/appi.ajp.2008.08081201
    1. Potkin S. G., Turner J. A., Brown G. G., McCarthy G., Greve D. N., Glover G. H., et al. . (2009). Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr. Bull. 35, 19–31. 10.1093/schbul/sbn162
    1. Roiser J. P., Howes O. D., Chaddock C. A., Joyce E. M., McGuire P. (2013). Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophr. Bull. 39, 1328–1336. 10.1093/schbul/sbs147
    1. Romaniuk L., Honey G. D., King J. R. L., Whalley H. C., McIntosh A. M., Levita L., et al. . (2010). Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Arch. Gen. Psychiatry 67, 1246–1254. 10.1001/archgenpsychiatry.2010.169
    1. Schlagenhauf F., Sterzer P., Schmack K., Ballmaier M., Rapp M., Wrase J., et al. . (2009). Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol. Psychiatry 65, 1032–1039. 10.1016/j.biopsych.2008.12.016
    1. Schott B. H., Minuzzi L., Krebs R. M., Elmenhorst D., Lang M., Winz O. H., et al. . (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J. Neurosci. 28, 14311–14319. 10.1523/JNEUROSCI.2058-08.2008
    1. Schultz W. (2002). Getting formal with dopamine and reward. Neuron 36, 241–263. 10.1016/s0896-6273(02)00967-4
    1. Schultz W. (2010). Dopamine signals for reward value and risk: basic and recent data. Behav. Brain Funct. 6:24. 10.1186/1744-9081-6-24
    1. Schultze-Lutter F., Addington J., Ruhrmann S., Klosterkötter J. (2007). Schizophrenia Proneness Instrument, Adult Version (SPI-A). Rome: Giovanni Fioriti Editore s.r.l..
    1. Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., et al. . (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356. 10.1523/jneurosci.5587-06.2007
    1. Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. . (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59(Suppl. 20), 22–33; quiz 34–57.
    1. Simon J. J., Biller A., Walther S., Roesch-Ely D., Stippich C., Weisbrod M., et al. . (2010a). Neural correlates of reward processing in schizophrenia—relationship to apathy and depression. Schizophr. Res. 118, 154–161. 10.1016/j.schres.2009.11.007
    1. Simon J. J., Walther S., Fiebach C. J., Friederich H.-C., Stippich C., Weisbrod M., et al. . (2010b). Neural reward processing is modulated by approach- and avoidance-related personality traits. Neuroimage 49, 1868–1874. 10.1016/j.neuroimage.2009.09.016
    1. Volz K. G., Schubotz R. I., von Cramon D. Y. (2004). Why am I unsure? Internal and external attributions of uncertainty dissociated by fMRI. Neuroimage 21, 848–857. 10.1016/j.neuroimage.2003.10.028
    1. Waltz J. A., Frank M. J., Wiecki T. V., Gold J. M. (2011). Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 25, 86–97. 10.1037/a0020882
    1. Waltz J. A., Kasanova Z., Ross T. J., Salmeron B. J., McMahon R. P., Gold J. M., et al. . (2013). The roles of reward, default and executive control networks in set-shifting impairments in schizophrenia. PLoS One 8:e57257. 10.1371/journal.pone.0057257
    1. Waltz J. A., Schweitzer J. B., Ross T. J., Kurup P. K., Salmeron B. J., Rose E. J., et al. . (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology 35, 2427–2439. 10.1038/npp.2010.126
    1. Whitfield-Gabrieli S., Ford J. M. (2012). Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 8, 49–76. 10.1146/annurev-clinpsy-032511-143049
    1. Wotruba D., Michels L., Buechler R., Metzler S., Theodoridou A., Gerstenberg M., et al. . (2014). Aberrant coupling within and across the default mode, task-positive and salience network in subjects at risk for psychosis. Schizophr. Bull. 40, 1095–1104. 10.1093/schbul/sbt161
    1. Ziauddeen H., Murray G. K. (2010). The relevance of reward pathways for schizophrenia. Curr. Opin. Psychiatry 23, 91–96. 10.1097/yco.0b013e328336661b

Source: PubMed

3
Tilaa