Congenital hypothyroidism

Maynika V Rastogi, Stephen H LaFranchi, Maynika V Rastogi, Stephen H LaFranchi

Abstract

Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism.

Figures

Figure 1
Figure 1
Infant with congenital hypothyroidism. A - 3 month old infant with untreated CH; picture demonstrates hypotonic posture, myxedematous facies, macroglossia, and umbilical hernia. B - Same infant, close up of face, showing myxedematous facies, macroglossia, and skin mottling. C - Same infant, close up showing abdominal distension and umbilical hernia.
Figure 2
Figure 2
Radiograph of the left lower extremity of two infants, showing absence of the distal femoral epiphysis on left. Radiograph of the left lower extremity of two infants. The infant on the left with congenital hypothyroidism demonstrates absence of the distal femoral and proximal tibial epiphyses, while in the normal infant on the right the distal femoral epiphysis is present.
Figure 3
Figure 3
Bamforth- Lazarus syndrome. An 8 month old infant with a homozygous mutation in the TTF-2 gene locus leading to congenital hypothyroidism. Phenotypic features include, low set ears, extensive cleft palate, hypertelorism, spiky hair and low posterior hairline. (Taken from; A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate; Human Molecular Genetics, 2002, Vol. 11, No. 17. Courtesy Dr. Michel Polak and the Oxford University Press.)
Figure 4
Figure 4
Congenital hypothyroidism: Diagnostic algorithm. Diagnostic algorithm: the diagnosis of congenital hypothyroidism begins with either abnormal newborn screening test results or a clinical suspicion of hypothyroidism, leading to serum thyroid function tests (typically TSH and free T4) to confirm the diagnosis. If a diagnosis of primary or secondary (central) congenital hypothyroidism is confirmed, other diagnostic studies can be undertaken to determine the underlying etiology.
Figure 5
Figure 5
Technetium 99 m scan findings in congenital hypothyroidism. A-Technetium 99 m scan, showing a large gland (approximately twice normal size) in eutopic location, consistent with dyshormonogenesis. B-Technetium 99 m scan, showing uptake in ectopic location, i.e. ectopic gland. C-Minimal uptake, consistent with aplasia or severe hypoplasia.

References

    1. Alm J, Larsson A, Zetterstrom R. Congenital hypothyroidism in Sweden. Incidence and age at diagnosis. Acta PaediatrScand. 1978;67(1):1–3. doi: 10.1111/j.1651-2227.1978.tb16268.x.
    1. Fisher DA. Second International Conference on Neonatal Thyroid Screening: progress report. JPediatr. 1983;102(5):653–654. doi: 10.1016/S0022-3476(83)80228-5.
    1. Gaudino R, Garel C, Czernichow P, Leger J. Proportion of various types of thyroid disorders among newborns with congenital hypothyroidism and normally located gland: a regional cohort study. ClinEndocrinol(Oxf) 2005;62(4):444–448.
    1. Skordis N, Toumba M, Savva SC, Erakleous E, Topouzi M, Vogazianos M, Argyriou A. High prevalence of congenital hypothyroidism in the Greek Cypriot population: results of the neonatal screening program 1990-2000. JPediatrEndocrinol. 2005;18(5):453–461.
    1. Harris KB, Pass KA. Increase in congenital hypothyroidism in New York State and in the United States. MolGenetMetab. 2007;91(3):268–277.
    1. LaFranchi SH, Murphey WH, Foley TP Jr, Larsen PR, Buist NR. Neonatal hypothyroidism detected by the Northwest Regional Screening Program. Pediatrics. 1979;63(2):180–191.
    1. Devos H, Rodd C, Gagne N, Laframboise R, Van Vliet G. A search for the possible molecular mechanisms of thyroid dysgenesis: sex ratios and associated malformations. JClinEndocrinolMetab. 1999;84(7):2502–2506.
    1. LaFranchi SH. Hypothyroidism. PediatrClinNorth Am. 1979;26(1):33–51.
    1. Kaplan SA. In: Clinical pediatric endocrinology. 2. Solomon A Kaplan, editor. Philadelphia: Saunders; 1990. 1990.
    1. Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. NEnglJMed. 1989;321(1):13–16.
    1. Calvo R, Obregon MJ, de Ona Ruiz C, del Rey Escobar F, de Escobar Morreale G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain. JClinInvest. 1990;86(3):889–899.
    1. Delange F. Neonatal screening for congenital hypothyroidism: results and perspectives. HormRes. 1997;48(2):51–61. doi: 10.1159/000185485.
    1. Alm J, Hagenfeldt L, Larsson A, Lundberg K. Incidence of congenital hypothyroidism: retrospective study of neonatal laboratory screening versus clinical symptoms as indicators leading to diagnosis. BrMedJ(ClinResEd) 1984;289(6453):1171–1175.
    1. Grant DB, Smith I, Fuggle PW, Tokar S, Chapple J. Congenital hypothyroidism detected by neonatal screening: relationship between biochemical severity and early clinical features. ArchDisChild. 1992;67(1):87–90.
    1. Abu EO, Bord S, Horner A, Chatterjee VK, Compston JE. The expression of thyroid hormone receptors in human bone. Bone. 1997;21(2):137–142. doi: 10.1016/S8756-3282(97)00097-5.
    1. Murphy E, Williams GR. The thyroid and the skeleton. ClinEndocrinol(Oxf) 2004;61(3):285–298.
    1. Olivieri A, Stazi MA, Mastroiacovo P, Fazzini C, Medda E, Spagnolo A, De Angelis S, Grandolfo ME, Taruscio D, Cordeddu V. A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991-1998) JClinEndocrinolMetab. 2002;87(2):557–562.
    1. Law WY, Bradley DM, Lazarus JH, John R, Gregory JW. Congenital hypothyroidism in Wales (1982-1993): demographic features, clinical presentation and effects on early neurodevelopment. ClinEndocrinol(Oxf) 1998;48(2):201–207.
    1. Kumar J, Gordillo R, Kaskel FJ, Druschel CM, Woroniecki RP. Increased prevalence of renal and urinary tract anomalies in children with congenital hypothyroidism. JPediatr. 2009;154(2):263–266. doi: 10.1016/j.jpeds.2008.08.023.
    1. Roberts HE, Moore CA, Fernhoff PM, Brown AL, Khoury MJ. Population study of congenital hypothyroidism and associated birth, defects, Atlanta, 1979-1992. AmJMedGenet. 1997;71(1):29–32.
    1. Kopp P. Pendred's syndrome and genetic defects in thyroid hormone synthesis. RevEndocr MetabDisord. 2000;1(1-2):109–121.
    1. Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp MS, John R, Lazarus JH, Ludgate M, Chatterjee VK. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. NatGenet. 1998;19(4):399–401.
    1. Pohlenz J, Dumitrescu A, Zundel D, Martine U, Schonberger W, Koo E, Weiss RE, Cohen RN, Kimura S, Refetoff S. Partial deficiency of thyroid transcription factor 1 produces predominantly neurological defects in humans and mice.[see comment] J Clin Invest. 2002;109(4):469–473.
    1. Krude H, Schutz B, Biebermann H, von Moers A, Schnabel D, Neitzel H, Tonnies H, Weise D, Lafferty A, Schwarz S. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX-2 1 haploinsufficiency.[see comment] J Clin Invest. 2002;109(4):475–480.
    1. Ferrara AM, De Michele G, Salvatore E, Di Maio L, Zampella E, Capuano S, Del Prete G, Rossi G, Fenzi G, Filla A. A novel NKX2.1 mutation in a family with hypothyroidism and benign hereditary chorea. Thyroid. 2008;18(9):1005–1009. doi: 10.1089/thy.2008.0085.
    1. Tashko V, Davachi F, Baboci R, Drishti G, Hoxha P. Kocher-Debre Semelaigne syndrome. ClinPediatr(Phila) 1999;38(2):113–115.
    1. Brown RS, Demmer LA. The etiology of thyroid dysgenesis-still an enigma after all these years. JClinEndocrinolMetab. 2002;87(9):4069–4071.
    1. Castanet M, Polak M, Bonaiti-Pellie C, Lyonnet S, Czernichow P, Leger J, Afdphe. Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab. 2001;86(5):2009–2014. doi: 10.1210/jc.86.5.2009.
    1. De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. EndocrRev. 2004;25(5):722–746. doi: 10.1210/er.2003-0028.
    1. Bubuteishvili L, Garel C, Czernichow P, Leger J. Thyroid abnormalities by ultrasonography in neonates with congenital hypothyroidism. JPediatr. 2003;143(6):759–764. doi: 10.1067/S0022-3476(03)00537-7.
    1. Castanet M, Lyonnet S, Bonaiti-Pellie C, Polak M, Czernichow P, Leger J. Familial forms of thyroid dysgenesis among infants with congenital . NEnglJMed. 2000;343(6):441–442. doi: 10.1056/NEJM200008103430614.
    1. Leger J, Marinovic D, Garel C, Bonaiti-Pellie C, Polak M, Czernichow P. Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. JClinEndocrinolMetab. 2002;87(2):575–580.
    1. Deladoey J, Belanger N, Van Vliet G. Random variability in congenital hypothyroidism from thyroid dysgenesis over 16 years in Quebec. JClinEndocrinolMetab. 2007;92(8):3158–3161.
    1. Miyai K, Inaoka K, Miyagi T. Committee for N, Infant Screening in O. Further studies on episodic occurrence of congenital dysgenetic hypothyroidism in Osaka, Japan. Endocr J. 2005;52(5):599–603. doi: 10.1507/endocrj.52.599.
    1. Al Taji E, Biebermann H, Limanova Z, Hnikova O, Zikmund J, Dame C, Gruters A, Lebl J, Krude H. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. EurJEndocrinol. 2007;156(5):521–529.
    1. Macchia PE, Lapi P, Krude H, Pirro MT, Missero C, Chiovato L, Souabni A, Baserga M, Tassi V, Pinchera A. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. NatGenet. 1998;19(1):83–86.
    1. Vilain C, Rydlewski C, Duprez L, Heinrichs C, Abramowicz M, Malvaux P, Renneboog B, Parma J, Costagliola S, Vassart G. Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation of PAX8. JClinEndocrinolMetab. 2001;86(1):234–238.
    1. Moya CM, Perez de Nanclares G, Castano L, Potau N, Bilbao JR, Carrascosa A, Bargada M, Coya R, Martul P, Vicens-Calvet E. Functional study of a novel single deletion in the TITF1/NKX2.1 homeobox gene that produces congenital hypothyroidism and benign chorea but not pulmonary distress. JClinEndocrinolMetab. 2006;91(5):1832–1841.
    1. Dentice M, Cordeddu V, Rosica A, Ferrara AM, Santarpia L, Salvatore D, Chiovato L, Perri A, Moschini L, Fazzini C. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. JClinEndocrinolMetab. 2006;91(4):1428–1433.
    1. Trueba SS, Auge J, Mattei G, Etchevers H, Martinovic J, Czernichow P, Vekemans M, Polak M, Attie-Bitach T. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab. 2005;90(1):455–462. doi: 10.1210/jc.2004-1358.
    1. Biebermann H, Schoneberg T, Krude H, Schultz G, Gudermann T, Gruters A. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. JClinEndocrinolMetab. 1997;82(10):3471–3480.
    1. Grasberger H, Vaxillaire M, Pannain S, Beck JC, Mimouni-Bloch A, Vatin V, Vassart G, Froguel P, Refetoff S. Identification of a locus for nongoitrous congenital hypothyroidism on chromosome 15q25.3-26.1. Hum Genet. 2005;118(3-4):348–355. doi: 10.1007/s00439-005-0036-6.
    1. Grasberger H, Mimouni-Bloch A, Vantyghem MC, van Vliet G, Abramowicz M, Metzger DL, Abdullatif H, Rydlewski C, Macchia PE, Scherberg NH. Autosomal dominant resistance to thyrotropin as a distinct entity in five multigenerational kindreds: clinical characterization and exclusion of candidate loci. J Clin Endocrinol Metab. 2005;90(7):4025–4034. doi: 10.1210/jc.2005-0572.
    1. Lania AG, Mantovani G, Spada A. Mechanisms of disease: Mutations of G proteins and G-protein-coupled receptors in endocrine diseases. Nature clin pract endocrinol metab. 2006;2(12):681–693. doi: 10.1038/ncpendmet0324.
    1. Bikker H, Baas F, De Vijlder JJ. Molecular analysis of mutated thyroid peroxidase detected in patients with total iodide organification defects. JClinEndocrinolMetab. 1997;82(2):649–653.
    1. Avbelj M, Tahirovic H, Debeljak M, Kusekova M, Toromanovic A, Krzisnik C, Battelino T. High prevalence of thyroid peroxidase gene mutations in patients with thyroid dyshormonogenesis. EurJEndocrinol. 2007;156(5):511–519.
    1. Bakker B, Bikker H, Vulsma T, de Randamie JS, Wiedijk BM, De Vijlder JJ. Two decades of screening for congenital hypothyroidism in The Netherlands: TPO gene mutations in total iodide organification defects (an update) JClinEndocrinolMetab. 2000;85(10):3708–3712.
    1. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, Ris-Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 2002;347(2):95–102. doi: 10.1056/NEJMoa012752.
    1. Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab. 2008;93(2):605–610. doi: 10.1210/jc.2007-2020.
    1. Pohlenz J, Refetoff S. Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism. Biochimie. 1999;81(5):469–476. doi: 10.1016/S0300-9084(99)80097-2.
    1. Gutnisky VJ, Moya CM, Rivolta CM, Domene S, Varela V, Toniolo JV, Medeiros-Neto G, Targovnik HM. Two distinct compound heterozygous constellations (R277X/IVS34-1G>C and R277X/R1511X) in the thyroglobulin (TG) gene in affected individuals of a Brazilian kindred with congenital goiter and defective TG synthe. JClinEndocrinolMetab. 2004;89(2):646–657.
    1. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism.[see comment] Nat Genet. 2005;37(11):1247–1252. doi: 10.1038/ng1654.
    1. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Leger A, Goudie D, Polak M, Gruters A, Visser TJ. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. NEnglJMed. 2008;358(17):1811–1818. doi: 10.1056/NEJMoa0706819.
    1. Friesema EC, Jansen J, Heuer H, Trajkovic M, Bauer K, Visser TJ. Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nature clin pract endocrinol metab. 2006;2(9):512–523. doi: 10.1038/ncpendmet0262.
    1. Olateju TO, Vanderpump MP. Thyroid hormone resistance. Ann Clin Biochem. 2006;43:431–440. doi: 10.1258/000456306778904678. Pt 6.
    1. Delange F, Dalhem A, Bourdoux P, Lagasse R, Glinoer D, Fisher DA, Walfish PG, Ermans AM. Increased risk of primary hypothyroidism in preterm infants. JPediatr. 1984;105(3):462–469. doi: 10.1016/S0022-3476(84)80030-X.
    1. Brown RS, Bellisario RL, Mitchell E, Keating P, Botero D. Detection of thyrotropin binding inhibitory activity in neonatal blood spots. JClinEndocrinolMetab. 1993;77(4):1005–1008.
    1. Pacaud D, Huot C, Gattereau A, Brown RS, Glorieux J, Dussault JH, Van Vliet G. Outcome in three siblings with antibody-mediated transient congenital hypothyroidism. JPediatr. 1995;127(2):275–277. doi: 10.1016/S0022-3476(95)70308-X.
    1. Lomenick JP, Jackson WA, Backeljauw PF. Amiodarone-induced neonatal hypothyroidism: a unique form of transient early-onset hypothyroidism. JPerinatol. 2004;24(6):397–399. doi: 10.1038/sj.jp.7211104.
    1. Atwell TD, Lteif AN, Brown DL, McCann M, Townsend JE, Leroy AJ. Neonatal thyroid function after administration of IV iodinated contrast agent to 21 pregnant patients. AJR AmJRoentgenol. 2008;191(1):268–271. doi: 10.2214/AJR.07.3336.
    1. Linder N, Davidovitch N, Reichman B, Kuint J, Lubin D, Meyerovitch J, Sela BA, Dolfin Z, Sack J. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. JPediatr. 1997;131(3):434–439. doi: 10.1016/S0022-3476(97)80071-6.
    1. Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich HP, Fishman SJ, Larsen PR. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. NEnglJMed. 2000;343(3):185–189. doi: 10.1056/NEJM200007203430305.
    1. van Tijn DA, de Vijlder JJ, Verbeeten B Jr, Verkerk PH, Vulsma T. Neonatal detection of congenital hypothyroidism of central origin. JClinEndocrinolMetab. 2005;90(6):3350–3359.
    1. Mandel SJ, Hermos RJ, Larson CA, Prigozhin AB, Rojas DA, Mitchell ML. Atypical hypothyroidism and the very low birthweight infant. Thyroid. 2000;10(8):693–695. doi: 10.1089/10507250050137770.
    1. Hanna CE, Krainz PL, Skeels MR, Miyahira RS, Sesser DE, LaFranchi SH. Detection of congenital hypopituitary hypothyroidism: ten-year experience in the Northwest Regional Screening Program. JPediatr. 1986;109(6):959–964. doi: 10.1016/S0022-3476(86)80276-1.
    1. Mandel S, Hanna C, Boston B, Sesser D, LaFranchi S. Thyroxine-binding globulin deficiency detected by newborn screening. JPediatr. 1993;122(2):227–230. doi: 10.1016/S0022-3476(06)80117-4.
    1. Schoen EJ, Clapp W, To TT, Fireman BH. The key role of newborn thyroid scintigraphy with isotopic iodide (123I) in defining and managing congenital hypothyroidism. Pediatrics. 2004;114(6):e683–688. doi: 10.1542/peds.2004-0803.
    1. Muir A, Daneman D, Daneman A, Ehrlich R. Thyroid scanning ultrasound, and serum thyroglobulin in determining the origin of congenital hypothyroidism. AmJDisChild. 1988;142(2):214–216.
    1. Ohnishi H, Sato H, Noda H, Inomata H, Sasaki N. Color Doppler ultrasonography: diagnosis of ectopic thyroid gland in patients with congenital hypothyroidism caused by thyroid dysgenesis. JClinEndocrinolMetab. 2003;88(11):5145–5149.
    1. Gagne N, Parma J, Deal C, Vassart G, Van Vliet G. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? JClinEndocrinolMetab. 1998;83(5):1771–1775.
    1. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III) JClinEndocrinolMetab. 2002;87(2):489–499.
    1. GeneTests.
    1. EuroGentest.
    1. Perry R, Heinrichs C, Bourdoux P, Khoury K, Szots F, Dussault JH, Vassart G, Van Vliet G. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. JClinEndocrinolMetab. 2002;87(9):4072–4077.
    1. Borck G, Roth C, Martine U, Wildhardt G, Pohlenz J. Mutations in the PDS gene in German families with Pendred's syndrome: V138F is a founder mutation. JClinEndocrinolMetab. 2003;88(6):2916–2921.
    1. Hashimoto H, Hashimoto K, Suehara N. Successful in utero treatment of fetal goitrous hypothyroidism: case report and review of the literature. FetalDiagnTher. 2006;21(4):360–365.
    1. Mirsaeid Ghazi AA, Ordookhani A, Pourafkari M, Fallahian M, Bahar A, Hedayati M, Hafizi A, Azizi F. Intrauterine diagnosis and management of fetal goitrous hypothyroidism: a report of an Iranian family with three consecutive pregnancies complicated by fetal goiter. Thyroid. 2005;15(12):1341–1347. doi: 10.1089/thy.2005.15.1341.
    1. Morine M, Takeda T, Minekawa R, Sugiyama T, Wasada K, Mizutani T, Suehara N. Antenatal diagnosis and treatment of a case of fetal goitrous hypothyroidism associated with high-output cardiac failure. Ultrasound ObstetGynecol. 2002;19(5):506–509. doi: 10.1046/j.1469-0705.2002.00680.x.
    1. Volumenie JL, Polak M, Guibourdenche J, Oury JF, Vuillard E, Sibony O, Reyal F, Raccah-Tebeka B, Boissinot C, Madec AM. Management of fetal thyroid goitres: a report of 11 cases in a single perinatal unit. PrenatDiagn. 2000;20(10):799–806.
    1. LaFranchi SH, Austin J. How should we be treating children with congenital hypothyroidism? JPediatrEndocrinol. 2007;20(5):559–578.
    1. Bongers-Schokking JJ, de Muinck Keizer-Schrama SM. Influence of timing and dose of thyroid hormone replacement on mental psychomotor, and behavioral development in children with congenital hypothyroidism. JPediatr. 2005;147(6):768–774. doi: 10.1016/j.jpeds.2005.09.031.
    1. Selva KA, Mandel SH, Rien L, Sesser D, Miyahira R, Skeels M, Nelson JC, Lafranchi SH. Initial treatment dose of L-thyroxine in congenital hypothyroidism. JPediatr. 2002;141(6):786–792. doi: 10.1067/mpd.2002.128887.
    1. Touati G, Leger J, Toublanc JE, Farriaux JP, Stuckens C, Ponte C, David M, Rochiccioli P, Porquet D, Czernichow P. A thyroxine dosage of 8 micrograms/kg per day is appropriate for the initial treatment of the majority of infants with congenital hypothyroidism. Eur J Pediatr. 1997;156(2):94–98. doi: 10.1007/s004310050562.
    1. Conrad SC, Chiu H, Silverman BL. Soy formula complicates management of congenital hypothyroidism. ArchDisChild. 2004;89(1):37–40.
    1. Selva KA, Harper A, Downs A, Blasco PA, Lafranchi SH. Neurodevelopmental outcomes in congenital hypothyroidism: comparison of initial T4 dose and time to reach target T4 and TSH. JPediatr. 2005;147(6):775–780. doi: 10.1016/j.jpeds.2005.07.024.
    1. American Academy of Pediatrics. Rose SR. Section on Endocrinology and Committee on Genetics ATABRPHC Lawson Wilkins Pediatric Endocrine Society.Foley T.Kaplowitz PB.Kaye CI.Sundararajan S.Varma SK. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics. 2006;117(6):2290–2303. doi: 10.1542/peds.2006-0915.
    1. Kooistra L, Laane C, Vulsma T, Schellekens JM, van der Meere JJ, Kalverboer AF. Motor and cognitive development in children with congenital hypothyroidism: a long-term evaluation of the effects of neonatal treatment. JPediatr. 1994;124(6):903–909. doi: 10.1016/S0022-3476(05)83178-6.
    1. Rovet JF. Children with congenital hypothyroidism and their siblings: do they really differ? Pediatrics. 2005;115(1):e52–57.
    1. Kempers MJ, van der Sluijs Veer L, Nijhuis-van der Sanden MW, Kooistra L, Wiedijk BM, Faber I, Last BF, de Vijlder JJ, Grootenhuis MA, Vulsma T. Intellectual and motor development of young adults with congenital hypothyroidism diagnosed by neonatal screening. JClinEndocrinolMetab. 2006;91(2):418–424.
    1. Salerno M, Militerni R, Bravaccio C, Micillo M, Capalbo D, Di MS, Tenore A. Effect of different starting doses of levothyroxine on growth and intellectual outcome at four years of age in congenital hypothyroidism. Thyroid. 2002;12(1):45–52. doi: 10.1089/105072502753451968.
    1. Heyerdahl S. Treatment variables as predictors of intellectual outcome in children with congenital hypothyroidism. EurJPediatr. 1996;155(5):357–361.
    1. Rovet JF, Ehrlich RM. Long-term effects of L-thyroxine therapy for congenital hypothyroidism. JPediatr. 1995;126(3):380–386. doi: 10.1016/S0022-3476(95)70452-3.
    1. Oerbeck B, Sundet K, Kase BF, Heyerdahl S. Congenital hypothyroidism: influence of disease severity and L-thyroxine treatment on intellectual motor, and school-associated outcomes in young adults. Pediatrics. 2003;112(4):923–930. doi: 10.1542/peds.112.4.923.
    1. Rovet J, Alvarez M. Thyroid hormone and attention in congenital hypothyroidism. JPediatrEndocrinol. 1996;9(1):63–66.
    1. Grant DB. Monitoring TSH concentrations during treatment for congenital hypothyroidism. ArchDisChild. 1991;66(6):669–670.
    1. Abusrewil SS, Tyfield L, Savage DC. Serum thyroxine and thyroid stimulating hormone concentrations after treatment of congenital hypothyroidism. ArchDisChild. 1988;63(11):1368–1371.
    1. Fisher DA, Schoen EJ, La Franchi S, Mandel SH, Nelson JC, Carlton EI, Goshi JH. The hypothalamic-pituitary-thyroid negative feedback control axis in children with treated congenital hypothyroidism. JClinEndocrinolMetab. 2000;85(8):2722–2727.
    1. Anonymous. Revised guidelines for neonatal screening programmes for primary congenital hypothyroidism. Working Group on Neonatal Screening of the European Society for Paediatric Endocrinology. Horm Res. 1999;52(1):49–52. doi: 10.1159/000023433.
    1. Fugazzola L, Persani L, Vannucchi G, Carletto M, Mannavola D, Vigone MC, Cortinovis F, Beccaria L, Longari V, Weber G. Thyroid scintigraphy and perchlorate test after recombinant human TSH: a new tool for the differential diagnosis of congenital hypothyroidism during infancy. EurJNuclMedMolImaging. 2007;34(9):1498–1503.
    1. Klein AH, Meltzer S, Kenny FM. Improved prognosis in congenital hypothyroidism treated before age three months. JPediatr. 1972;81(5):912–915. doi: 10.1016/S0022-3476(72)80542-0.
    1. Boileau P, Bain P, Rives S, Toublanc JE. Earlier onset of treatment or increment in LT4 dose in screened congenital hypothyroidism: which as the more important factor for IQ at 7 years? HormRes. 2004;61(5):228–233. doi: 10.1159/000076597.
    1. Connelly JF, Rickards AL, Coakley JC, Price GJ, Francis I, Mathur KS, Wolfe R. Newborn screening for congenital hypothyroidism Victoria,Australia 1977-1977 Part 2: Treatment progress and outcome. JPediatrEndocrinol. 2001;14(9):1611–1634.
    1. Neonatal hypothyroidism screening: status of patients at 6 years of age. New England Congenital Hypothyroidism Collaborative. JPediatr. 1985;107(6):915–919. doi: 10.1016/S0022-3476(85)80188-8.
    1. Tillotson SL, Fuggle PW, Smith I, Ades AE, Grant DB. Relation between biochemical severity and intelligence in early treated congenital hypothyroidism: a threshold effect. BMJ. 1994;309(6952):440–445.
    1. Glorieux J, Dussault J, Van Vliet G. Intellectual development at age 12 years of children with congenital hypothyroidism diagnosed by neonatal screening. JPediatr. 1992;121(4):581–584. doi: 10.1016/S0022-3476(05)81150-3.
    1. Bongers-Schokking JJ, Koot HM, Wiersma D, Verkerk PH, de Muinck Keizer-Schrama SM. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. JPediatr. 2000;136(3):292–297. doi: 10.1067/mpd.2000.103351.
    1. Mathai S, Cutfield WS, Gunn AJ, Webster D, Jefferies C, Robinson E, Hofman P. A novel therapeutic paradigm to treat congenital hypothyroidism. ClinEndocrinol(Oxf) 2008;69(1):142–147.
    1. Dubuis JM, Glorieux J, Richer F, Deal CL, Dussault JH, Van Vliet G. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. JClinEndocrinolMetab. 1996;81(1):222–227.
    1. Characteristics of infantile hypothyroidism discovered on neonatal screening. JPediatr. 1984;104(4):539–544. doi: 10.1016/S0022-3476(84)80543-0.
    1. Correlation of cognitive test scores and adequacy of treatment in adolescents with congenital hypothyroidism. New England Congenital Hypothyroidism Collaborative. JPediatr. 1994;124(3):383–387. doi: 10.1016/S0022-3476(94)70359-0.
    1. Eugene D, Djemli A, Van Vliet G. Sexual dimorphism of thyroid function in newborns with congenital hypothyroidism. JClinEndocrinolMetab. 2005;90(5):2696–2700.

Source: PubMed

3
Tilaa