Maternal Characteristics Affect Fetal Growth Response in the Women First Preconception Nutrition Trial

K Michael Hambidge, Carla M Bann, Elizabeth M McClure, Jamie E Westcott, Ana Garcés, Lester Figueroa, Shivaprasad S Goudar, Sangappa M Dhaded, Omrana Pasha, Sumera A Ali, Richard J Derman, Robert L Goldenberg, Marion Koso-Thomas, Manjunath S Somannavar, Veena Herekar, Umber Khan, Nancy F Krebs, K Michael Hambidge, Carla M Bann, Elizabeth M McClure, Jamie E Westcott, Ana Garcés, Lester Figueroa, Shivaprasad S Goudar, Sangappa M Dhaded, Omrana Pasha, Sumera A Ali, Richard J Derman, Robert L Goldenberg, Marion Koso-Thomas, Manjunath S Somannavar, Veena Herekar, Umber Khan, Nancy F Krebs

Abstract

The objective of this secondary analysis was to identify maternal characteristics that modified the effect of maternal supplements on newborn size. Participants included 1465 maternal-newborn dyads in Guatemala, India, and Pakistan. Supplementation commenced before conception (Arm 1) or late 1st trimester (Arm 2); Arm 3 received usual care. Characteristics included body mass index (BMI), stature, anemia, age, education, socio-economic status (SES), parity, and newborn sex. Newborn outcomes were z-scores for length (LAZ), weight (WAZ), and weight to length ratio-for-age (WLRAZ). Mixed-effect regression models included treatment arm, effect modifier, and arm * effect modifier interaction as predictors, controlling for site, characteristics, and sex. Parity (para-0 vs. para ≥1), anemia (anemia/no anemia), and sex were significant effect modifiers. Effect size (95% CI) for Arm 1 vs. 3 was larger for para-0 vs. ≥1 for all outcomes (LAZ 0.56 (0.28, 0.84, p < 0.001); WAZ 0.45 (0.20, 0.07, p < 0.001); WLRAZ 0.52 (0.17, 0.88, p < 0.01) but only length for Arm 2 vs. 3. Corresponding effects for para ≥1 were >0.02. Arm 3 z-scores were all very low for para-0, but not para ≥1. Para-0 and anemia effect sizes for Arm 1 were > Arm 2 for WAZ and WLRAZ, but not LAZ. Arm 1 and 2 had higher WAZ for newborn boys vs. girls. Maternal nulliparity and anemia were associated with impaired fetal growth that was substantially improved by nutrition intervention, especially when commenced prior to conception.

Keywords: maternal nutrition; newborn anthropometry; nulliparous; preconception.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Adjusted mean (95% confidence interval) length-for-age z-scores (LAZ) of neonatal outcomes by treatment arm and parity. Horizontal line at LAZ −1 depicts a length deficit that has predicted a high risk of stunting at two years. Circles indicate parity = 0; Triangles indicate parity ≥1.
Figure 2
Figure 2
Adjusted mean (95% confidence interval) weight-for-age z-scores (WAZ) of neonatal outcomes by treatment arm and parity. Horizontal line at WAZ −1.28 corresponds to the 10th% WAZ (small-for-gestational age). Circles indicate parity = 0; Triangles indicate parity ≥1.
Figure 3
Figure 3
Adjusted mean (95% confidence interval) weight to length ratio-for-age z-scores (WLRAZ) of neonatal outcomes by treatment arm and parity. Horizontal line at WLRAZ −2 depicts weight to length deficit for diagnosis of wasting. Circles indicate parity = 0; Triangles indicate parity ≥1.

References

    1. Dimasuay K.G., Boeuf P., Powell T.L., Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front. Physiol. 2016;7:12. doi: 10.3389/fphys.2016.00012.
    1. Baptiste-Roberts K., Salafia C.M., Nicholson W.K., Duggan A., Wang N.Y., Brancati F.L. Gross placental measures and childhood growth. J. Matern. Fetal Neonatal Med. 2009;22:13–23. doi: 10.1080/14767050802415728.
    1. Wu G., Bazer F.W., Cudd T.A., Meininger C.J., Spencer T.E. Maternal nutrition and fetal development. J. Nutr. 2004;134:2169–2172. doi: 10.1093/jn/134.9.2169.
    1. Lander R.L., Hambidge K.M., Westcott J.E., Tejeda G., Diba T.S., Mastiholi S.C., Khan U.S., Garces A., Figueroa L., Tshefu A., et al. Pregnant Women in Four Low-Middle Income Countries Have a High Prevalence of Inadequate Dietary Intakes That Are Improved by Dietary Diversity. Nutrients. 2019;11:1560. doi: 10.3390/nu11071560.
    1. Hambidge K.M., Krebs N.F., Garces A., Westcott J.E., Figueroa L., Goudar S.S., Dhaded S., Pasha O., Aziz Ali S., Tshefu A., et al. Anthropometric indices for non-pregnant women of childbearing age differ widely among four low-middle income populations. BMC Public Health. 2017;18:45. doi: 10.1186/s12889-017-4509-z.
    1. Fall C.H. The fetal and early life origins of adult disease. Indian Pediatr. 2003;40:480–502.
    1. Kozuki N., Katz J., Lee A.C., Vogel J.P., Silveira M.F., Sania A., Stevens G.A., Cousens S., Caulfield L.E., Christian P., et al. Short maternal stature increases risk of small-for-gestational-age and preterm births in low—and middle-income countries: Individual participant data meta-analysis and population attributable fraction. J. Nutr. 2015;145:2542–2550. doi: 10.3945/jn.115.216374.
    1. Black R.E., Allen L.H., Bhutta Z.A., Caulfield L.E., de Onis M., Ezzati M., Mathers C., Rivera J. Maternal and child undernutrition: Global and regional exposures and health consequences. Lancet. 2008;371:243–260. doi: 10.1016/S0140-6736(07)61690-0.
    1. Subramanian S.V., Ackerson L.K., Davey Smith G., John N.A. Association of maternal height with child mortality, anthropometric failure, and anemia in India. JAMA. 2009;301:1691–1701. doi: 10.1001/jama.2009.548.
    1. Ozaltin E., Hill K., Subramanian S.V. Association of maternal stature with offspring mortality, underweight, and stunting in low—to middle-income countries. JAMA. 2010;303:1507–1516. doi: 10.1001/jama.2010.450.
    1. Martorell R., Zongrone A. Intergenerational influences on child growth and undernutrition. Paediatr. Perinat. Epidemiol. 2012;26(Suppl. 1):302–314. doi: 10.1111/j.1365-3016.2012.01298.x.
    1. Rahman M.M., Abe S.K., Rahman M.S., Kanda M., Narita S., Bilano V., Ota E., Gilmour S., Shibuya K. Maternal anemia and risk of adverse birth and health outcomes in low—and middle-income countries: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2016;103:495–504. doi: 10.3945/ajcn.115.107896.
    1. Kozuki N., Lee A.C., Silveira M.F., Sania A., Vogel J.P., Adair L., Barros F., Caulfield L.E., Christian P., Fawzi W., et al. The associations of parity and maternal age with small-for-gestational-age, preterm, and neonatal and infant mortality: A meta-analysis. BMC Public Health. 2013;13(Suppl. 3):S2. doi: 10.1186/1471-2458-13-S3-S2.
    1. Griffiths P.L., Balakrishna N., Fernandez Rao S., Johnson W. Do socio-economic inequalities in infant growth in rural India operate through maternal size and birth weight? Ann. Hum. Biol. 2016;43:154–163. doi: 10.3109/03014460.2015.1134656.
    1. Kabir A., Rahman M.J., Shamim A.A., Klemm R.D.W., Labrique A.B., Rashid M., Christian P., West K.P., Jr. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis. PLoS ONE. 2017;12:e0189677. doi: 10.1371/journal.pone.0189677.
    1. Ronsmans C., Fisher D.J., Osmond C., Margetts B.M., Fall C.H. Multiple micronutrient supplementation during pregnancy in low-income countries: A meta-analysis of effects on stillbirths and on early and late neonatal mortality. Food Nutr. Bull. 2009;30:S547–S555. doi: 10.1177/15648265090304S409.
    1. Smith E.R., Shankar A.H., Wu L.S., Aboud S., Adu-Afarwuah S., Ali H., Agustina R., Arifeen S., Ashorn P., Bhutta Z.A., et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: A meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet Glob. Health. 2017;5:e1090–e1100. doi: 10.1016/S2214-109X(17)30371-6.
    1. Potdar R.D., Sahariah S.A., Gandhi M., Kehoe S.H., Brown N., Sane H., Dayama M., Jha S., Lawande A., Coakley P.J., et al. Improving women’s diet quality preconceptionally and during gestation: Effects on birth weight and prevalence of low birth weight—A randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project) Am. J. Clin. Nutr. 2014;100:1257–1268. doi: 10.3945/ajcn.114.084921.
    1. Imdad A., Bhutta Z.A. Maternal nutrition and birth outcomes: Effect of balanced protein-energy supplementation. Paediatr. Perinat. Epidemiol. 2012;26(Suppl. 1):178–190. doi: 10.1111/j.1365-3016.2012.01308.x.
    1. Stevens B., Buettner P., Watt K., Clough A., Brimblecombe J., Judd J. The effect of balanced protein energy supplementation in undernourished pregnant women and child physical growth in low—and middle-income countries: A systematic review and meta-analysis. Matern. Child Nutr. 2015;11:415–432. doi: 10.1111/mcn.12183.
    1. Ashorn P., Hallamaa L., Allen L.H., Ashorn U., Chandrasiri U., Deitchler M., Doyle R., Harjunmaa U., Jorgensen J.M., Kamiza S., et al. Co-causation of reduced newborn size by maternal undernutrition, infections, and inflammation. Matern. Child Nutr. 2018;14:e12585. doi: 10.1111/mcn.12585.
    1. Ashorn P., Alho L., Ashorn U., Cheung Y.B., Dewey K.G., Harjunmaa U., Lartey A., Nkhoma M., Phiri N., Phuka J., et al. The impact of lipid-based nutrient supplement provision to pregnant women on newborn size in rural Malawi: A randomized controlled trial. Am. J. Clin. Nutr. 2015;101:387–397. doi: 10.3945/ajcn.114.088617.
    1. Mridha M.K., Matias S.L., Chaparro C.M., Paul R.R., Hussain S., Vosti S.A., Harding K.L., Cummins J.R., Day L.T., Saha S.L., et al. Lipid-based nutrient supplements for pregnant women reduce newborn stunting in a cluster-randomized controlled effectiveness trial in Bangladesh. Am. J. Clin. Nutr. 2016;103:236–249. doi: 10.3945/ajcn.115.111336.
    1. Huybregts L., Roberfroid D., Lanou H., Menten J., Meda N., Van Camp J., Kolsteren P. Prenatal food supplementation fortified with multiple micronutrients increases birth length: A randomized controlled trial in rural Burkina Faso. Am. J. Clin. Nutr. 2009;90:1593–1600. doi: 10.3945/ajcn.2009.28253.
    1. Adu-Afarwuah S., Lartey A., Okronipa H., Ashorn P., Zeilani M., Peerson J.M., Arimond M., Vosti S., Dewey K.G. Lipid-based nutrient supplement increases the birth size of infants of primiparous women in Ghana. Am. J. Clin. Nutr. 2015;101:835–846. doi: 10.3945/ajcn.114.091546.
    1. Hambidge K.M., Westcott J.E., Garces A., Figueroa L., Goudar S.S., Dhaded S.M., Pasha O., Ali S.A., Tshefu A., Lokangaka A., et al. A multicountry randomized controlled trial of comprehensive maternal nutrition supplementation initiated before conception: The Women First trial. Am. J. Clin. Nutr. 2019;109:457–469. doi: 10.1093/ajcn/nqy228.
    1. Ali S.A., Hambidge K.M., Pasha O., Khan A., Krebs N.F. The Women First Preconception Nutrition Trial Group. Women First Preconception Nutrition Trial (WF): Effects of maternal nutrition supplements commencing before conception or in early gestation on newborn size in rural Pakistan. Curr. Dev. Nutr. 2018;2:24–25.
    1. Dhaded S.M., Hambidge K.M., Ali S.A., Somannavar M.S., Saleem S., Pasha O., Khan U., Herekar V., Vernekar S., Kumar Y., et al. Preconception nutrition intervention improved birth length and reduced stunting and wasting in newborns in South Asia: The Women First Randomized Controlled Trial. PLoS ONE. 2019 in press.
    1. Dhaded S., Hambidge K.M., Krebs N.F. The Women First Preconception Nutrition Trial Group. Women First Preconception Nutrition Trial (WF): Newborn anthropometric outcomes in N Karnataka, India after a maternal nutrition intervention. Curr. Dev. Nutr. 2018;2:30–31.
    1. Arriaza A., Hambidge M., Krebs N., Channon A., Garces A. Guatemalan women mean height, a century behind; Proceedings of the Society for Latin America Nutrition (SLAN) XVIII; Guadalajara, Mexico. 11–15 November 2018; [(accessed on 17 October 2019)]. Available online:
    1. Hambidge K.M., Krebs N.F., Westcott J.E., Garces A., Goudar S.S., Kodkany B.S., Pasha O., Tshefu A., Bose C.L., Figueroa L., et al. Preconception maternal nutrition: A multi-site randomized controlled trial. BMC Pregnancy Childbirth. 2014;14:111. doi: 10.1186/1471-2393-14-111.
    1. Villar J., Cheikh Ismail L., Victora C.G., Ohuma E.O., Bertino E., Altman D.G., Lambert A., Papageorghiou A.T., Carvalho M., Jaffer Y.A., et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–868. doi: 10.1016/S0140-6736(14)60932-6.
    1. Papageorghiou A.T., Ohuma E.O., Altman D.G., Todros T., Cheikh Ismail L., Lambert A., Jaffer Y.A., Bertino E., Gravett M.G., Purwar M., et al. International standards for fetal growth based on serial ultrasound measurements: The Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet. 2014;384:869–879. doi: 10.1016/S0140-6736(14)61490-2.
    1. Adu-Afarwuah S., Lartey A., Okronipa H., Ashorn P., Zeilani M., Baldiviez L.M., Oaks B.M., Vosti S., Dewey K.G. Impact of small-quantity lipid-based nutrient supplement on hemoglobin, iron status and biomarkers of inflammation in pregnant Ghanaian women. Matern. Child Nutr. 2017;13 doi: 10.1111/mcn.12262.
    1. Gough E.K., Moodie E.E., Prendergast A.J., Ntozini R., Moulton L.H., Humphrey J.H., Manges A.R. Linear growth trajectories in Zimbabwean infants. Am. J. Clin. Nutr. 2016;104:1616–1627. doi: 10.3945/ajcn.116.133538.
    1. Christian P., Lee S.E., Donahue Angel M., Adair L.S., Arifeen S.E., Ashorn P., Barros F.C., Fall C.H., Fawzi W.W., Hao W., et al. Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low- and middle-income countries. Int. J. Epidemiol. 2013;42:1340–1355. doi: 10.1093/ije/dyt109.
    1. Victora C.G., de Onis M., Hallal P.C., Blossner M., Shrimpton R. Worldwide timing of growth faltering: Revisiting implications for interventions. Pediatrics. 2010;125:e473–e480. doi: 10.1542/peds.2009-1519.
    1. Prendergast A.J., Humphrey J.H. The stunting syndrome in developing countries. Paediatr. Int. Child Health. 2014;34:250–265. doi: 10.1179/2046905514Y.0000000158.
    1. Fox E.L., Davis C., Downs S.M., Schultink W., Fanzo J. Who is the woman in women’s nutrition? A narrative review of evidence and actions to support women’s nutrition throughout life. Curr. Dev. Nutr. 2019;3:nzy076. doi: 10.1093/cdn/nzy076.
    1. Ramakrishnan U., Grant F., Goldenberg T., Zongrone A., Martorell R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012;26(Suppl. 1):285–301. doi: 10.1111/j.1365-3016.2012.01281.x.

Source: PubMed

3
Tilaa