Exogenous Angiotensin I Metabolism in Aorta Isolated from Streptozotocin Treated Diabetic Rats

P P Wołkow, B Bujak-Giżycka, J Jawień, R Olszanecki, J Madej, J Rutowski, R Korbut, P P Wołkow, B Bujak-Giżycka, J Jawień, R Olszanecki, J Madej, J Rutowski, R Korbut

Abstract

Purpose. Products of angiotensin (ANG) I metabolism may predispose to vascular complications of diabetes mellitus. Methods. Diabetes was induced with streptozotocin (75 mg/kg i.p.). Rat aorta fragments, isolated 4 weeks later, were pretreated with perindoprilat (3 μM), thiorphan (3 μM), or vehicle and incubated for 15 minutes with ANG I (1 μM). Products of ANG I metabolism through classical (ANG II, ANG III, and ANG IV) and alternative (ANG (1-9), ANG (1-7), and ANG (1-5)) pathways were measured in the buffer, using liquid chromatography-mass spectrometry. Results. Incubation with ANG I resulted in higher concentration of ANG II (P = 0.02, vehicle pretreatment) and lower of ANG (1-9) (P = 0.048, perindoprilat pretreatment) in diabetes. Preference for the classical pathway is suggested by higher ANG III/ANG (1-7) ratios in vehicle (P = 0.03), perindoprilat (P = 0.02), and thiorphan pretreated (P = 0.02) diabetic rat. Within the classical pathway, ratios of ANG IV/ANG II (P = 0.01) and of ANG IV/ANG III (P = 0.049), but not of ANG III/ANG II are lower in diabetes. Conclusions. Diabetes in rats led to preference toward deleterious (ANG II, ANG III) over protective (ANG IV, ANG (1-9), and ANG (1-7)) ANG I metabolites.

Figures

Figure 1
Figure 1
Main pathways of ANG I metabolism. ACE: angiotensin converting enzyme; ACE-2: angiotensin converting enzyme type 2; APA: aminopeptidase A; APN: aminopeptidase N; CMA: chymase; NEP: neutral endopeptidase.
Figure 2
Figure 2
Representative chromatogram of angiotensins standards mixture. Insert: chromatograms of extracted monitored ions of each analyzed angiotensin.
Figure 3
Figure 3
Representative chromatograms of products of ANG I conversion by aorta of STZ rats (a) and control rats (b). Left panel: TIC chromatogram (peaks represent relative abundance, 100% = ANG I); right panel: extracted chromatograms for monitored ions of ANG II and ANG I (unified scale).
Figure 4
Figure 4
Concentrations (median, minimum, and maximum) of ANG II and ANG (1–9), produced from exogenously added ANG I, by the aortic rings of STZ and CTRL rats, pretreated with perindoprilat (ANG I + P) or thiorphan (ANG I + T). P < 0.05, ANG II concentration was higher in (ANG I only) group of STZ aorta. #P < 0.05, ANG (1–9) concentration was higher in (ANG I + P) group of CTRL aorta.

References

    1. Cooper M. E. The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. American Journal of Hypertension. 2004;17(supplement 2):16S–20S. doi: 10.1016/j.amjhyper.2004.08.004.
    1. Pernomian L., Pernomian L., Restini C. B. A. Counter-regulatory effects played by the ACE—Ang II—AT1 and ACE2—Ang-(1-7)—Mas axes on the reactive oxygen species-mediated control of vascular function: perspectives to pharmacological approaches in controlling vascular complications. Vasa. 2014;43(6):404–414. doi: 10.1024/03011526/a000387.
    1. Vauquelin G., Michotte Y., Smolders I., et al. Cellular targets for angiotensin II fragments: pharmacological and molecular evidence. Journal of the Renin-Angiotensin-Aldosterone System. 2002;3(4):195–204. doi: 10.3317/jraas.2002.041.
    1. Elsner M., Guldbakke B., Tiedge M., Munday R., Lenzen S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia. 2000;43(12):1528–1533. doi: 10.1007/s001250051564.
    1. Romero-Nava R., Rodriguez J. E., Reséndiz-Albor A. A., et al. Changes in protein and gene expression of angiotensin II receptors (AT1 and AT2) in aorta of diabetic and hypertensive rats. Clinical and Experimental Hypertension. 2016;38(1):56–62. doi: 10.3109/10641963.2015.1060984.
    1. Campbell D. J., Kelly D. J., Wilkinson-Berka J. L., Cooper M. E., Skinner S. L. Increased bradykinin and ‘normal’ angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney International. 1999;56(1):211–221. doi: 10.1046/j.1523-1755.1999.00519.x.
    1. Van Linthout S., Spillmann F., Lorenz M., et al. Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension. 2009;53(4):682–687. doi: 10.1161/HYPERTENSIONAHA.108.118919.
    1. Failli P., Alfarano C., Franchi-Micheli S., et al. Losartan counteracts the hyper-reactivity to angiotensin II and ROCK1 over-activation in aortas isolated from streptozotocin-injected diabetic rats. Cardiovascular Diabetology. 2009;8, article 32 doi: 10.1186/1475-2840-8-32.
    1. Fraga-Silva R. A., Costa-Fraga F. P., Murça T. M., et al. Angiotensin-converting enzyme 2 activation improves endothelial function. Hypertension. 2013;61(6):1233–1238. doi: 10.1161/HYPERTENSIONAHA.111.00627.
    1. Bujak-Gizycka B., Madej J., Wołkow P. P., et al. Measurement of angiotensin metabolites in organ bath and cell culture experiments by Liquid Chromatography - Electrospray Ionization—Mass Spectrometry (LC-ESI-MS) Journal of Physiology and Pharmacology. 2007;58(3):529–540.
    1. Olszanecki R., Bujak-Gizycka B., Madej J., et al. Kaempferol, but not resveratrol inhibits angiotensin converting enzyme. Journal of Physiology and Pharmacology. 2008;59(2):387–392.
    1. Ladeia A. M., Sampaio R. R., Hita M. C., Adan L. F. Prognostic value of endothelial dysfunction in type 1 diabetes mellitus. World Journal of Diabetes. 2014;5(5):601–605. doi: 10.4239/wjd.v5.i5.601.
    1. McFarlane R., McCredie R. J., Bonney M.-A., et al. Angiotensin converting enzyme inhibition and arterial endothelial function in adults with Type 1 diabetes mellitus. Diabetic Medicine. 1999;16(1):62–66. doi: 10.1046/j.1464-5491.1999.00021.x.
    1. Maser R. E., Lenhard M. J. Effect of treatment with losartan on cardiovascular autonomic and large sensory nerve fiber function in individuals with diabetes mellitus: a 1-year randomized, controlled trial. Journal of Diabetes and its Complications. 2003;17(5):286–291. doi: 10.1016/s1056-8727(02)00205-2.
    1. Müller M., Fasching P., Schmid R., Burgdorff T., Waldhäusl W., Eichler H. G. Inhibition of paracrine angiotensin-converting enzyme in vivo: effects on interstitial glucose and lactate concentrations in human skeletal muscle. European Journal of Clinical Investigation. 1997;27(10):825–830. doi: 10.1046/j.1365-2362.1997.1920746.x.
    1. Lupi R., Del Guerra S., Bugliani M., et al. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. European Journal of Endocrinology. 2006;154(2):355–361. doi: 10.1530/eje.1.02086.
    1. Furuhashi M., Ura N., Takizawa H., et al. Blockade of the renin-angiotensin system decreases adipocyte size with improvement in insulin sensitivity. Journal of Hypertension. 2004;22(10):1977–1982. doi: 10.1097/00004872-200410000-00021.
    1. Frossard M., Joukhadar C., Steffen G., Schmid R., Eichler H. G., Müller M. Paracrine effects of angiotensin-converting-enzyme- and angiotensin-II- receptor-inhibition on transcapillary glucose transport in humans. Life Sciences. 2000;66(10):PL147–PL154. doi: 10.1016/S0024-3205(99)00679-7.
    1. Folli F., Saad M. J. A., Velloso L., et al. Crosstalk between insulin and angiotensin II signalling systems. Experimental and Clinical Endocrinology and Diabetes. 1999;107(2):133–139. doi: 10.1055/s-0029-1212088.
    1. Brosnihan K. B., Li P., Ferrario C. M. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3):523–528. doi: 10.1161/01.HYP.27.3.523.
    1. Kahraman S., Aydin C., Elpek G. O., Dirice E., Sanlioglu A. D. Diabetes-resistant NOR mice are more severely affected by streptozotocin compared to the diabetes-prone NOD Mice: correlations with liver and kidney GLUT2 Expressions. Journal of Diabetes Research. 2015;2015:8. doi: 10.1155/2015/450128.450128
    1. Head R. J., Longhurst P. A., Panek R. L., Stitzel R. E. A contrasting effect of the diabetic state upon the contractile responses of aortic preparations from the rat and rabbit. British Journal of Pharmacology. 1987;91(2):275–286. doi: 10.1111/j.1476-5381.1987.tb10282.x.
    1. Hong E., Villafaña S. Early diabetes in WKY and SHR produces decrease of the responses to angiotensin II and 5-HT and changes in the NO-GMPc pathway. Clinical and Experimental Hypertension. 2009;31(5):462–470. doi: 10.1080/10641960902825495.
    1. Arun K. H. S., Kaul C. L., Ramarao P. High glucose concentration augments angiotensin II mediated contraction via AT1 receptors in rat thoracic aorta. Pharmacological Research. 2004;50(6):561–568. doi: 10.1016/j.phrs.2004.06.001.
    1. Crespo M. J., Dunbar D. C. Enalapril improves vascular and cardiac function in streptozotocin-diabetic rats. Cellular and Molecular Biology. 2003;49(8):1311–1318.
    1. Fiordaliso F., Cuccovillo I., Bianchi R., et al. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sciences. 2006;79(2):121–129. doi: 10.1016/j.lfs.2005.12.036.
    1. Mahmood A., Jackman H. L., Teplitz L., Igić R. Metabolism of angiotensin I in the coronary circulation of normal and diabetic rats. Peptides. 2002;23(6):1171–1175. doi: 10.1016/s0196-9781(02)00051-7.
    1. Verma A., Shan Z., Lei B., et al. ACE2 and Ang-(1–7) confer protection against development of diabetic retinopathy. Molecular Therapy. 2012;20(1):28–36. doi: 10.1038/mt.2011.155.
    1. Patel V. B., Parajuli N., Oudit G. Y. Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clinical Science. 2014;126(7):471–482. doi: 10.1042/CS20130344.
    1. Vinh A., Widdop R. E., Drummond G. R., Gaspari T. A. Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice. Cardiovascular Research. 2008;77(1):178–187. doi: 10.1093/cvr/cvm021.
    1. Vinh A., Widdop R. E., Chai S. Y., Gaspari T. A. Angiotensin IV-evoked vasoprotection is conserved in advanced atheroma. Atherosclerosis. 2008;200(1):37–44. doi: 10.1016/j.atherosclerosis.2007.12.042.
    1. Nasser M., Clere N., Botelle L., et al. Opposite effects of angiotensins receptors type 2 and type 4 on streptozotocin induced diabetes vascular alterations in mice. Cardiovascular Diabetology. 2014;13, article 40 doi: 10.1186/1475-2840-13-40.
    1. Karnik S. S., Unal H., Kemp J. R., et al. Angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimulis. Pharmacological Reviews. 2015;67(4):754–819. doi: 10.1124/pr.114.010454.

Source: PubMed

3
Tilaa