Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity

John E Fortunato, Catherine L Tegeler, Lee Gerdes, Sung W Lee, Nicholas M Pajewski, Meghan E Franco, Jared F Cook, Hossam A Shaltout, Charles H Tegeler, John E Fortunato, Catherine L Tegeler, Lee Gerdes, Sung W Lee, Nicholas M Pajewski, Meghan E Franco, Jared F Cook, Hossam A Shaltout, Charles H Tegeler

Abstract

Autonomic dysregulation and heterogeneous symptoms characterize postural orthostatic tachycardia syndrome (POTS). This study evaluated the effect of high-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM(®)), a noninvasive, allostatic neurotechnology for relaxation and auto-calibration of neural oscillations, on heart rate variability, brain asymmetry, and autonomic symptoms, in adolescents with POTS. Seven subjects with POTS (three males, ages 15-18) underwent a median of 14 (10-16) HIRREM sessions over 13 (8-17) days. Autonomic function was assessed from 10-min continuous heart rate and blood pressure recordings, pre- and post-HIRREM. One-minute epochs of temporal high-frequency (23-36 Hz) brain electrical activity data (T3 and T4, eyes closed) were analyzed from baseline HIRREM assessment and subsequent sessions. Subjects rated autonomic symptoms before and after HIRREM. Four of seven were on fludrocortisone, which was stopped before or during their sessions. Heart rate variability in the time domain (standard deviation of the beat-to-beat interval) increased post-HIRREM (mean increase 51%, range 10-143, p = 0.03), as did baroreflex sensitivity (mean increase in high-frequency alpha 65%, range -6 to 180, p = 0.05). Baseline temporal electrical asymmetry negatively correlated with change in asymmetry from assessment to the final HIRREM session (p = 0.01). Summed high-frequency amplitudes at left and right temporal lobes decreased a median of 3.8 μV (p = 0.02). There was a trend for improvements in self-reported symptoms related to the autonomic nervous system. Use of HIRREM was associated with reduced sympathetic bias in autonomic cardiovascular regulation, greater symmetry and reduced amplitudes in temporal lobe high-frequency electrical activity, and a trend for reduced autonomic symptoms. Data suggest the potential for allostatic neurotechnology to facilitate increased flexibility in autonomic cardiovascular regulation, possibly through more balanced activity at regions of the neocortex responsible for autonomic management. Clinical trial registry "Tilt Table with Suspected postural orthostatic tachycardia syndrome (POTS) Subjects," Protocol Record: WFUBAHA01.

Keywords: Allostasis; Autonomic dysregulation; Hemispheric asymmetry; Nausea; Neurotechnology; POTS.

Figures

Fig. 1
Fig. 1
a, b FFT spectral display of electroencephalic data with frequency (Hertz, Hz, central Y axis) plotted against transformed amplitude (microvolts, µV, X axis). These graphs from a study subject represent 1 min of data from the T3/T4 montage with eyes closed (EC) at the baseline assessment (a) and at the penultimate minute of the penultimate session (b). Columns to the left and right denote ten frequency bands of aggregated data (00: <1.0 Hz; 10: 1.0–3.0 Hz; 20: 3.0–5.5 Hz; 30: 5.5–7.5 Hz; 40: 7.5–10.0 Hz; 50: 10.0–12.0 Hz; 60: 12.0–15.0 Hz; 70: 15.0–23.0 Hz; 80: 23.0–36.0 Hz; and 90: 36.0–48.0 Hz) and numerical values for averages in those ranges. Amplitudes in the 23–36 Hz range (dark purple color) are outlined by red boxes
Fig. 2
Fig. 2
Change in asymmetry score for high frequency range (23–36 Hz) of brain electrical activity at bilateral temporal lobes (vertical axis), as a function of baseline asymmetry (horizontal axis)

References

    1. Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc. 2012;87:1214–1225. doi: 10.1016/j.mayocp.2012.08.013.
    1. Campbell IG, Bromberger JT, Buysse DJ, Hall MH, Hardin KA, Kravitz HM, et al. Evaluation of the association of menopausal status with delta and beta EEG activity during sleep. Sleep. 2011;34:1561–1568.
    1. Fortunato JE, Shaltout HA, Larkin MM, Rowe PC, Diz DI, Koch KL. Fludrocortisone improves nausea in children with orthostatic intolerance (OI) Clin Auton Res. 2011;21:419–423. doi: 10.1007/s10286-011-0130-x.
    1. Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope, and the postural orthostatic tachycardia syndrome. Clin Auton Res. 2011;21:69–72. doi: 10.1007/s10286-011-0119-5.
    1. Garland EM, Raj SR, Black BK, Harris PA, Robertson D. The hemodynamic and neurohumoral phenotype of postural tachycardia syndrome. Neurology. 2007;69(8):790–798. doi: 10.1212/01.wnl.0000267663.05398.40.
    1. Gerdes L, Gerdes P, Lee SW, Tegeler CH. HIRREM: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 2013;3:193–205. doi: 10.1002/brb3.116.
    1. Gray MA, Taggart P, Suttpon PM, Groves D, Holdright DR, Bradbury D, et al. A cortical potential reflecting cardiac function. Proc Natl Acad Sci USA. 2007;104:6818–6823. doi: 10.1073/pnas.0609509104.
    1. Hilz MJ, Dutsch MD, Perrine K, Nelson PK, Rauhut U, Devinsky O. Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol. 2001;49:575–584. doi: 10.1002/ana.1006.
    1. Hyams JS, Burke G, Davis PM, Rzepski B, Andrulonis PA. Abdominal pain and irritable bowel syndrome in adolescents: a community-based study. J Pediatr. 1996;129:220–226. doi: 10.1016/S0022-3476(96)70246-9.
    1. Lee SW, Gerdes L, Tegeler CL, Shaltout HA, Tegeler CH (2014) A bihemispheric autonomic model for traumatic stress effects on health and behavior. Front Psychol 5. Article 843
    1. Liu J, Huang H, Xu X, Chen JD. Effects and possible mechanisms of acupuncture at ST36 on upper and lower abdominal symptoms induced by rectal distension in healthy volunteers. Am J Physiol Regul Integr Comp Physiol. 2012;303:R209–R217. doi: 10.1152/ajpregu.00301.2010.
    1. Low PA, Sandroni P, Joyner M, Shen WK. Postural tachycardia syndrome (POTS) J Cardiovasc Electrophysiol. 2009;20:352–358. doi: 10.1111/j.1540-8167.2008.01407.x.
    1. Maestri R, Pinna GD, Robbi E, Capomolla S, La Rovere MT. Noninvasive measurement of blood pressure variability: accuracy of the Finometer monitor and comparison with the Finapres device. Physiol Meas. 2005;26:1125–1136. doi: 10.1088/0967-3334/26/6/021.
    1. Nwazue VC, Arnold AC, Raj V, Black BK, Biaggioni I, Paranjape SY, et al. Understanding the placebo effect in clinical trials for postural tachycardia syndrome. Clin Exp Pharmacol Physiol. 2014;41:325–330. doi: 10.1111/1440-1681.12221.
    1. Ojha A, Chelimsky TC, Chelimsky G. Comorbidities in pediatric patients with postural orthostatic tachycardia syndrome. J Pediatr. 2011;158:20–23. doi: 10.1016/j.jpeds.2010.07.005.
    1. Okano AH, Fontes EB, Montenegro RA, Farinatti PT, Cyrino ES, Li LM, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49:1213–1218. doi: 10.1136/bjsports-2012-091658.
    1. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–1732. doi: 10.1212/WNL.42.9.1727.
    1. Parati G, Frattola A, Di RM, Castiglioni P, Pedotti A, Mancia G. Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol. 1995;268:H1606–H1612.
    1. Perlis ML, Merica H, Smith MT, Giles DE. Beta EEG activity and insomnia. Sleep Med Rev. 2001;5:363–374. doi: 10.1053/smrv.2001.0211.
    1. Raj SR, Biaggioni I, Yamhure PC, Black BK, Paranjape SY, Byrne DW, et al. Renin-aldosterone paradox and perturbed blood volume regulation underlying postural tachycardia syndrome. Circulation. 2005;111(13):1574–1582. doi: 10.1161/01.CIR.0000160356.97313.5D.
    1. Rees CA. Lost among the trees? The autonomic nervous system and paediatrics. Arch Dis Child. 2014;99:552–562. doi: 10.1136/archdischild-2012-301863.
    1. Safder S, Chelimsky TC, O’Riordan MA, Chelimsky G. Autonomic testing in functional gastrointestinal disorders: implications of reproducible gastrointestinal complaints during tilt table testing. Gastroenterol Res Pract. 2009;2009:868496. doi: 10.1155/2009/868496.
    1. Shaltout HA, Wagoner AL, Fortunato JE, Diz DI. Impaired hemodynamic response to head up tilt in adolescent with orthostatic intolerance. Hypertension. 2014;64(A513):141.
    1. Sowder E, Gevirtz R, Shapiro W, Ebert C. Restoration of vagal tone: a possible mechanism for functional abdominal pain. Appl Psychophysiol Biofeedback. 2010;35(3):199–206. doi: 10.1007/s10484-010-9128-8.
    1. Sterling P. Principles of allostasis: optimal design, predictive regulation, pathophysiology, and rational therapeutics. In: Schulkin J, editor. Allostasis, homeostasis, and the costs of physiological adaptation. New York: Cambridge University Press; 2004. pp. 17–64.
    1. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2012;106:5–15. doi: 10.1016/j.physbeh.2011.06.004.
    1. Sterling P. Homeostasis vs allostasis: implications for brain function and mental disorders. JAMA Psychiatry. 2014;71:1192–1193. doi: 10.1001/jamapsychiatry.2014.1043.
    1. Tarbell SE, Shaltout HA, Wagoner AL, Diz DI, Fortunato JE. Relationship among nausea, anxiety, and orthostatic symptoms in pediatric patients with chronic unexplained nausea. Exp Brain Res. 2014;232:2645–2650. doi: 10.1007/s00221-014-3981-2.
    1. Tegeler CH, Kumar SR, Conklin D, Lee SW, Gerdes L, Turner DP, et al. Open label, randomized, crossover pilot trial of high-resolution, relational, resonance-based, electroencephalic mirroring to relieve insomnia. Brain Behav. 2012;2:814–824. doi: 10.1002/brb3.101.
    1. Tegeler CH, Tegeler CL, Lee SW, Shaltout HA, Pajewski NM. Neural-oscillatory intervention for auto-calibration improves EEG asymmetry and heart rate variability (HRV) Ann Neurol. 2013;74(S17):S77.
    1. Tegeler CH, Shaltout HA, Tegeler CL, Gerdes L, Lee SW. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population. Brain Behav. 2015;5:e00343. doi: 10.1002/brb3.343.
    1. Tegeler CH, Tegeler CL, Cook JF, Lee SW, Pajewski NM. Reduction in menopause-related symptoms associated with use of a noninvasive neurotechnology for autocalibration of neural oscillations. Menopause. 2015;22:650–655. doi: 10.1097/GME.0000000000000422.
    1. Witt CM, Meissner K, Pach D, Thiele C, Ludtke R, Ghadiyali Z et al (2012) Stimulation of gastric slow waves with manual acupuncture at acupuncture points ST36 and PC6—a randomized single blind controlled trial. Neurogastroenterol Motil 24(5):438–445, e211–e12. doi:10.1111/j.1365-2982.2012.01877.x
    1. Yoon BW, Morillo CA, Cechetto DF, Hachinski V. Cerebral hemispheric lateralization in cardiac autonomic control. Arch Neurol. 1997;54:741–744. doi: 10.1001/archneur.1997.00550180055012.
    1. Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE, et al. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology. 1990;40:1408–1411. doi: 10.1212/WNL.40.9.1408.
    1. Zhang N, Song G, Chen J, Xu F, Yin J, Wu Q et al (2015) Ameliorating effects and autonomic mechanisms of needleless transcutaneous electrical stimulation at ST36 on stress-induced impairment in gastric slow waves. J Gastroenterol Hepatol. doi:10.1111/jgh.12995 [Epub ahead of print]

Source: PubMed

3
Tilaa