Effects of Diacutaneous Fibrolysis on Passive Neuromuscular Response and Mechanosensitivity in Athletes with Hamstring Shortening: A Randomized Controlled Trial

Aida Cadellans-Arróniz, Carlos López-de-Celis, Albert Pérez-Bellmunt, Jacobo Rodríguez-Sanz, Luis Llurda-Almuzara, Vanessa González-Rueda, Pere Ramón Rodríguez-Rubio, Aida Cadellans-Arróniz, Carlos López-de-Celis, Albert Pérez-Bellmunt, Jacobo Rodríguez-Sanz, Luis Llurda-Almuzara, Vanessa González-Rueda, Pere Ramón Rodríguez-Rubio

Abstract

Introduction: Diacutaneous Fibrolysis is defined as specific instrumental intervention to normalize function in the musculoskeletal system. It is considered a treatment method for the mechanical alterations of the locomotor system, and it is widely used in sports for therapeutic and preventive purposes. Despite the clinical benefits observed in different musculoskeletal conditions, the action mechanism of diacutaneous fibrolysis remains uncertain. There are no studies evaluating the neuromuscular response on the posterior muscular chain of the lower extremity in athletes, where overload, stiffness, and injury incidence are high.

Objective: To evaluate the immediate, and 30 min post treatment effects of a single diacutaneous fibrolysis session on passive neuromuscular response and mechanosensitibity on hamstring and gluteus in athletes with shortening.

Design: A randomized within participant clinical trial.

Methods: Sixty-six athletes with hamstring shortening were included (PKE < 160). The lower limbs were randomized between the experimental limb and control limb, regardless of dominance. A single session of diacutaneous fibrolysis was applied to the posterior gluteus maximus, biceps femoris, and semitendinosus of the experimental lower limb whereas the control limb was not treated. Viscoelastic muscle properties (myotonometry), contractile muscle properties (tensomiography), and mechanosensitivity (algometry) were tested before treatment (T0), after treatment (T1), and 30 min post treatment (T2).

Results: Regarding viscoelastic properties, in the intra-group analysis we found statistically significant differences in the experimental limb at T1, decreasing muscle stiffness in gluteus maximus (p < 0.042), in biceps femoris (p < 0.001) and in semitendinosus (p < 0.032). We also observed statistically significant differences in Tone decrease (p < 0.011) and relaxation increase (p < 0.001) in biceps femoris. At T2, the decrease in stiffness in all tested muscles was maintained (p < 0.05). There were statistically significant inter-groups differences in stiffness on gluteus (p < 0.048) and biceps femoris (p < 0.019) and in tone on biceps femoris (p < 0.009) compared to the control limb. For contractile properties, we only found statistically significant differences on maximal radial displacement (Dm) in gluteus, both control and experimental at T2 (p < 0.05) and in biceps femoris control (p < 0.030). No changes were found in the mechanosensitivity.

Conclusions: A single session of diacutaneous fibrolysis produces changes in some parameters related to viscoelasticity properties of the biceps femoris and gluteus. There were no changes on contractile properties on semitendinosus. Only small changes on the contractile properties on the gluteus maximus and biceps femoris were found. No effect was found on the mechanosensitivity of the posterior chain muscles in athletes with hamstring shortening.

Trial registration: ClinicalTrials.gov NCT04778293.

Keywords: diacutaneous fibrolysis; hamstring; mechanosensibility; myotonometry; neuromuscular response; tensiomyography.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Figures

Figure 1
Figure 1
(A) Biceps femoris TMG. (B) Biceps femoris myotonometry. (C) Biceps femoris mechansonsibility. (D) Gluteus maximus TMG. (E) Semitendinosus TMG. (F) Gluteus maximus myotonometry. (G) Semitendinosus myotonometry. (H) Gluteus maximus mechansonsibility. (I) Semitendinosus mechansonsibility.
Figure 2
Figure 2
(A) Diacutaneous fibrolysis to paravertebral muscles, (B) Diacutaneous fibrolysis cuadratus lumbar, (C) Diacutaneous fibrolysis in gluteal area (D) Diacutaneous fibrolysis between vastus externus and biceps femoris. (E,F) Diacutaneos fibrolysis in hamstring area.
Figure 3
Figure 3
CONSORT. (Consolidated Standards of Reporting Trial) flow diagram.

References

    1. Tricás J.M., Lucha O., Duby P. Fibrolisis Diacutánea Según el Concepto de Kurt Ekman. Asociación Española de Fibrolisis Diacutánea; Zaragoza, Spain: 2010.
    1. Barra M., López C., Fernández G., Murillo E., Villar E., Raya L. The immediate effects of diacutaneous fibrolysis on pain and mobility in patients suffering from painful shoulder: A randomized placebo-controlled pilot study. Clin. Rehabil. 2011;25:339–348. doi: 10.1177/0269215510385480.
    1. Jiménez del Barrio S., Estébanez de Miguel E., Bueno Gracia E., Haddad Garay M., Tricás Moreno J.M., Hidalgo García C. Effects of diacutaneous fibrolysis in patients with mild to moderate symptomatic carpal tunnel syndrome: A randomized controlled trial. Clin. Rehabil. 2018;32:1645–1655. doi: 10.1177/0269215518787316.
    1. Leite W.B., Oliveira M.L., Ferreira I.C., Anjos C.F., Barbosa M.A., Barbosa A.C. Effects of 4-Week Diacutaneous Fibrolysis on Myalgia, Mouth Opening, and Level of Functional Severity in Women with Temporomandibular Disorders: A Randomized Controlled Trial. J. Manip. Physiol. Ther. 2020;43 doi: 10.1016/j.jmpt.2020.01.002.
    1. Cadellans-Arróniz A., Llurda-Almuzara L., Campos-Laredo B., Cabanas-Valdés R., Garcia-Sutil A., López-De-Celis C. The effectiveness of diacutaneous fibrolysis on pain, range of motion and functionality in musculoskeletal disorders: A systematic review and meta-analysis. Clin. Rehabil. 2020 doi: 10.1177/0269215520968056.
    1. Veszely M., Guissard N., Duchateau J. Contribution à l’étude des effets de la fibrolyse diacutanée sur le triceps sural. Ann. Kinésithérapie. 2000;2:54–59.
    1. Pérez-bellmunt A., Llurda L., Simon M., Navarro R., Casasayas O., López-de-celis C. Review Article Neuromuscular Response What is it and How to Measure it? Phys. Med. Rehabil. J. 2019;2:1–7.
    1. Labata-Lezaun N., López-De-Celis C., Llurda-Almuzara L., González-Rueda V., Cadellans-Arróniz A., Pérez-Bellmunt A. Correlation between maximal radial muscle displacement and stiffness in gastrocnemius muscle. Physiol. Meas. 2020;41:125013. doi: 10.1088/1361-6579/abcdf4.
    1. López-De-Celis C., Pérez-Bellmunt A., Bueno-Gracia E., Fanlo-Mazas P., Zárate-Tejero C.A., Llurda-Almuzara L., Arróniz A.C., Rodriguez-Rubio P.R. Effect of diacutaneous fibrolysis on the muscular properties of gastrocnemius muscle. PLoS ONE. 2020;15:e0243225. doi: 10.1371/journal.pone.0243225.
    1. Arner J.W., McClincy M.P., Bradley J.P. Hamstring Injuries in Athletes. J. Am. Acad. Orthop. Surg. 2019;27:868–877. doi: 10.5435/JAAOS-D-18-00741.
    1. Yıldırım M.Ş., Tuna F., Demirbağ Kabayel D., Süt N. The Cut-off Values for the Diagnosis of Hamstring Shortness and Related Factors. Balkan Med. J. Int. 2018;35:388–393. doi: 10.4274/balkanmedj.2017.1517.
    1. Kim D.-H., Lee J.J., You J., Sung H. Effects of instrument-assisted soft tissue mobilization technique on strength, knee joint passive stiffness, and pain threshold in hamstring shortness. J. Back Musculoskelet. Rehabil. 2018;31:1169–1176. doi: 10.3233/BMR-170854.
    1. Opar D.A., Williams M.D., Shield A.J. Hamstring strain injuries: Factors that Lead to injury and re-Injury. Sport Med. 2012;42:209–226. doi: 10.2165/11594800-000000000-00000.
    1. Akazawa N., Okawa N., Kishi M., Nakatani K., Nishikawa K., Tokumura D., Matsui Y., Moriyama H. Effects of long-term self-massage at the musculotendinous junction on hamstring extensibility, stiffness, stretch tolerance, and structural indices: A randomized controlled trial. Phys. Ther. Sport. 2016;21:38–45. doi: 10.1016/j.ptsp.2016.01.003.
    1. Albert P., Labata-lezaun N., Llurda-almuzara L., Rodr J. Effects of a Massage Protocol in Tensiomyographic and Myotonometric Proprieties. Int. J. Environ. Res. Public Health. 2021;18:3891.
    1. Lucha López M., López De Celis C., Fanlo Mazas P., Barra López M., Hidalgo García C., Tricás Moreno J. Efectos inmediatos de la fibrolisis diacutánea en deportistas con dolor anterior en la rodilla. Cuest. Fisioter Rev. Univ. Inf. Investig. Fisioter. 2015;44:33–40.
    1. Maniar N., Shield A., Williams M.D., Timmins R.G., Opar D. Hamstring strength and flexibility after hamstring strain injury: A systematic review and meta-analysis. Br. J. Sports Med. 2016;50:909–920. doi: 10.1136/bjsports-2015-095311.
    1. García-Pinillos F., Ruiz-Ariza A., Del Castillo R.M., Latorre-Román P.Á. Impact of limited hamstring flexibility on vertical jump, kicking speed, sprint, and agility in young football players. J. Sports Sci. 2015;33:1293–1297. doi: 10.1080/02640414.2015.1022577.
    1. Wan X., Qu F., Garrett W.E., Liu H., Yu B. Relationships among hamstring muscle optimal length and hamstring flexibility and strength. J. Sport Health Sci. 2017;6:275–282. doi: 10.1016/j.jshs.2016.04.009.
    1. Álvarez-Díaz P., Alentorn-Geli E., Ramon S., Marín M., Steinbacher G., Rius M., Seijas R., Ballester J., Cugat R. Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg. Sports Traumatol. Arthrosc. 2014;23:3407–3413. doi: 10.1007/s00167-014-3165-4.
    1. Reurink G., Goudswaard G.J., Oomen H.G., Moen M.H., Tol J.L., Verhaar J.A., Weir A. Reliability of the Active and Passive Knee Extension Test in Acute Hamstring Injuries. Am. J. Sports Med. 2013;41:1757–1761. doi: 10.1177/0363546513490650.
    1. Davidson M.J., Bryant A.L., Bower W.F., Frawley H.C. Myotonometry Reliably Measures Muscle Stiffness in the Thenar and Perineal Muscles. Physiother. Can. 2017;69:104–112. doi: 10.3138/ptc.2015-85.
    1. Bizzini M., Mannion A.F. Reliability of a new, hand-held device for assessing skeletal muscle stiffness. Clin. Biomech. 2003;18:459–461. doi: 10.1016/S0268-0033(03)00042-1.
    1. Šimunič B. Between-day reliability of a method for non-invasive estimation of muscle composition. J. Electromyogr. Kinesiol. 2012;22:527–530. doi: 10.1016/j.jelekin.2012.04.003.
    1. Tous-Fajardo J., Moras G., Jiménez S.R., Usach R., Doutres D.M., Maffiuletti N.A. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J. Electromyogr. Kinesiol. 2010;20:761–766. doi: 10.1016/j.jelekin.2010.02.008.
    1. Pérez-Bellmunt A., Simon M., López-De-Celis C., Ortiz-Miguel S., González-Rueda V., Fernandez-De-Las-Peñas C. Effects on Neuromuscular Function after Ischemic Compression in Latent Trigger Points in the Gastrocnemius Muscles: A Randomized Within-Participant Clinical Trial. J. Manip. Physiol. Ther. 2021 doi: 10.1016/j.jmpt.2020.07.015.
    1. Mutlu E.K., Ozdincler A.R. Reliability and responsiveness of algometry for measuring pressure pain threshold in patients with knee osteoarthritis. J. Phys. Ther. Sci. 2015;27:1961–1965. doi: 10.1589/jpts.27.1961.
    1. Nussbaum E.L., Downes L. Reliability of Clinical Pressure-Pain Algometric Measurements Obtained on Consecutive Days. Phys. Ther. 1998;78:160–169. doi: 10.1093/ptj/78.2.160.
    1. Marshall P.W., Lovell R., Siegler J.C., Siefler J.C. Changes in Passive Tension of the Hamstring Muscles during a Simulated Soccer Match. Int. J. Sports Physiol. Perform. 2016;11:594–601. doi: 10.1123/ijspp.2015-0009.
    1. Ho C.-S., Lee M.-C., Chang C.-Y., Chen W.-C., Huang W.-C. Beneficial effects of a negative ion patch on eccentric exercise-induced muscle damage, inflammation, and exercise performance in badminton athletes. Chin. J. Physiol. 2020;63:35–42. doi: 10.4103/CJP.CJP_33_19.
    1. Ikeda N., Otsuka S., Kawanishi Y., Kawakami Y. Effects of Instrument-assisted Soft Tissue Mobilization on Musculoskeletal Properties. Med. Sci. Sports Exerc. 2019;51:2166–2172. doi: 10.1249/MSS.0000000000002035.
    1. Leite W.B., De Oliveira M.L., Barbosa M.A., Ferreira I.C., Mesquita G., Baumgarth H., Barbosa A.C. Muscle excitation, force response, and efficiency during explosive force production after diacutaneous fibrolysis on lateral gastrocnemius of recreational athletes. J. Bodyw. Mov. Ther. 2020;24:554–560. doi: 10.1016/j.jbmt.2020.08.001.
    1. MacGregor L.J., Fairweather M.M., Bennett R.M., Hunter A.M. The Effect of Foam Rolling for Three Consecutive Days on Muscular Efficiency and Range of Motion. Sports Med. Open. 2018;4:26. doi: 10.1186/s40798-018-0141-4.
    1. Sato K., Nimura A., Yamaguchi K., Akita K. Anatomical study of the proximal origin of hamstring muscles. J. Orthop. Sci. 2012;17:614–618. doi: 10.1007/s00776-012-0243-7.
    1. O’Rahilly R., Müller F., Meyer D.B. The human vertebral column at the end of the embryonic period proper. 4. The sacrococcygeal region. J. Anat. 1990;168:95–111.
    1. Willard F.H., Vleeming A., Schuenke M.D., Danneels L., Schleip R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012;221:507–536. doi: 10.1111/j.1469-7580.2012.01511.x.
    1. Pérez-Bellmunt A., Miguel-Pérez M., Brugué M.B., Cabús J.B., Casals M., Martinoli C., Kuisma R. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles. Man. Ther. 2015;20:445–450. doi: 10.1016/j.math.2014.11.005.
    1. Seffrin M.C.B., Cattano N.M., Reed M.A., Gardiner-Shires A.M. Instrument-Assisted Soft Tissue Mobilization: A Systematic Review and Effect-Size Analysis. J. Athl. Train. 2019;54:808–821. doi: 10.4085/1062-6050-481-17.
    1. Babatunde O.O., Jordan J.L., Van Der Windt D.A., Hill J.C., Foster N.E., Protheroe J. Effective treatment options for musculoskeletal pain in primary care: A systematic overview of current evidence. PLoS ONE. 2017;12:e0178621. doi: 10.1371/journal.pone.0178621.

Source: PubMed

3
Tilaa