Management of Musculoskeletal Manifestations in Inflammatory Bowel Disease

Tejas Sheth, C S Pitchumoni, Kiron M Das, Tejas Sheth, C S Pitchumoni, Kiron M Das

Abstract

Musculoskeletal manifestations are the most common extraintestinal manifestations in inflammatory bowel diseases. Some appendicular manifestations are independent of gut inflammation and are treated with standard anti-inflammatory strategies. On the other hand, axial involvement is linked to gut inflammatory activity; hence, there is a considerable amount of treatment overlap. Biological therapies have revolutionized management of inflammatory bowel diseases as well as of associated articular manifestations. Newer mechanisms driving gut associated arthropathy have surfaced in the past decade and have enhanced our interests in novel treatment targets. Introduction of biosimilar molecules is expected in the US market in the near future and will provide an opportunity for considerable cost savings on healthcare. A multidisciplinary approach involving a gastroenterologist, rheumatologist, and physical therapist is ideal for these patients.

Figures

Figure 1
Figure 1
Effects of NSAIDs and selective COX-2 inhibitors. Phospholipase A2 acts on the membrane phospholipids to yield arachidonic acid (AA). AA is metabolized by either cyclooxygenase (COX) or lipoxygenase (LOX) pathway. Two unique COX isoenzymes convert AA into prostaglandin endoperoxides. COX-1 is expressed constitutively in most cells, including GI mucosal cells. In contrast, COX-2 is expressed by inflammatory cells in response to a variety of stimuli including microbial products and cytokines. COX-1 generates prostanoids responsible for “housekeeping” function; they help with vasodilatation, preserving mucosal flow, and induction of platelet aggregation in response to vascular injury to prevent blood loss. COX-2 induction plays a part in leucocyte activation, adherence, and angiogenesis through effects on NFκB and IL8. Reactive oxygen species generated due to enzymatic activities of COX and LOX also stimulate NFκB and perpetuate the cycle. Inhibition of COX-2 prevents this inflammatory cascade and is responsible for clinical effects of NSAIDs and selective COX-2 inhibitors. NSAIDs, in addition, also block COX-1 pathway leading to mucosal injury, vasoconstriction, mucosal ischemia, and increased vascular permeability. NSAIDs may also lead to direct epithelial damage and mitochondrial uncoupling of oxidative phosphorylation. Dashed red line indicates enzymatic inhibition.
Figure 2
Figure 2
The mechanisms of action of various drugs on the gut-synovial axis. SSA and ATA agents restore increased permeability of the inflamed gut mucosa, thus preventing exposure of PAMPs (pathogen associated molecular patterns) and DAMPs (danger associated molecular patterns) to mucosal APCs. Moreover, SSA directly inhibits phagocytosis and intracellular processing of the ingested antigens, thus reducing MHC restricted presentation of processed peptides to naïve T cells, T cells activation, and subsequent release of inflammatory cytokines. ATA agents downregulate T cell clonal proliferation in gut and in synovium by inhibiting release of proinflammatory cytokines and promoting apoptosis of activated T cells. ATA agents also induce regulatory T cell phenotypes and directly neutralize soluble and membrane bound TNFα molecules. Antimetabolites (azathioprine, methotrexate, and leflunomide) inhibit pyrimidine synthesis, thus preventing clonal proliferation of activated T lymphocytes. Rituximab prevents secretion of antibodies directed against autoreactive antigens present in synovium by inhibiting B cells via CD20 antagonism. Ustekinumab directly inhibits IL12 and IL23 mediated Th1 and Th17 cell responses both in gut and in synovium. NSAIDs inhibit production of prostaglandins and mitigate local inflammation. Interaction between α4β7 integrin expressed on the surface of activated lymphocytes and MadCAM-1 expressed on high endothelial venules is inhibited by antibodies designed against integrin molecules—Natalizumab and vedolizumab (more gut specific). Most of these agents execute similar cellular and anti-inflammatory effects both in gut and in synovium, thus providing a significant treatment overlap. SSA: sulfasalazine, ATA: anti-TNFα, NSAIDs: nonsteroidal anti-inflammatory drugs, APCs: antigen presenting cells, MadCAM-1: mucosal addressin cell adhesion molecule-1, PG: prostaglandin, and LT: leukotriene.

References

    1. Sheth T., Pitchumoni C. S., Das K. M. Musculoskeletal manifestations in inflammatory bowel disease: a revisit in search of immunopathophysiological mechanisms. Journal of Clinical Gastroenterology. 2014;48(4):308–317. doi: 10.1097/mcg.0000000000000067.
    1. Feagins L. A., Cryer B. L. Do non-steroidal anti-inflammatory drugs cause exacerbations of inflammatory bowel disease? Digestive Diseases and Sciences. 2010;55(2):226–232. doi: 10.1007/s10620-009-1042-7.
    1. Alzoghaibi M. A., Walsh S. W., Willey A., Yager D. R., Fowler A. A., III, Graham M. F. Linoleic acid induces interleukin-8 production by Crohn's human intestinal smooth muscle cells via arachidonic acid metabolites. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2004;286(4):G528–G537. doi: 10.1152/ajpgi.00189.2003.
    1. Tanaka K.-I., Suemasu S., Ishihara T., Tasaka Y., Arai Y., Mizushima T. Inhibition of both COX-1 and COX-2 and resulting decrease in the level of prostaglandins E2 is responsible for non-steroidal anti-inflammatory drug (NSAID)-dependent exacerbation of colitis. European Journal of Pharmacology. 2009;603(1–3):120–132. doi: 10.1016/j.ejphar.2008.11.058.
    1. Mahadevan U., Loftus E. V., Jr., Tremaine W. J., Sandborn W. J. Safety of selective cyclooxygenase-2 inhibitors in inflammatory bowel disease. The American Journal of Gastroenterology. 2002;97(4):910–914. doi: 10.1016/s0002-9270(02)03964-3.
    1. El Miedany Y., Youssef S., Ahmed I., El Gaafary M. The gastrointestinal safety and effect on disease activity of etoricoxib, a selective Cox-2 inhibitor in inflammatory bowel diseases. The American Journal of Gastroenterology. 2006;101(2):311–317. doi: 10.1111/j.1572-0241.2006.00384.x.
    1. Fornai M., Antonioli L., Colucci R., et al. NSAID-induced enteropathy: are the currently available selective COX-2 inhibitors all the same? Journal of Pharmacology and Experimental Therapeutics. 2014;348(1):86–95. doi: 10.1124/jpet.113.207118.
    1. Lanas A., Sopeña F. Nonsteroidal anti-inflammatory drugs and lower gastrointestinal complications. Gastroenterology Clinics of North America. 2009;38(2):333–352. doi: 10.1016/j.gtc.2009.03.007.
    1. Goldstein J. L., Eisen G. M., Lewis B., et al. Small bowel mucosal injury is reduced in healthy subjects treated with celecoxib compared with ibuprofen plus omeprazole, as assessed by video capsule endoscopy. Alimentary Pharmacology & Therapeutics. 2007;25(10):1211–1222. doi: 10.1111/j.1365-2036.2007.03312.x.
    1. Sandborn W. J., Stenson W. F., Brynskov J., et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clinical Gastroenterology and Hepatology. 2006;4(2):203–211. doi: 10.1016/j.cgh.2005.12.002.
    1. Matuk R., Crawford J., Abreu M. T., Targan S. R., Vasiliauskas E. A., Papadakis K. A. The spectrum of gastrointestinal toxicity and effect on disease activity of selective cyclooxygenase-2 inhibitors in patients with inflammatory bowel disease. Inflammatory Bowel Diseases. 2004;10(4):352–356. doi: 10.1097/00054725-200407000-00005.
    1. Miao X.-P., Ouyang Q., Li H.-Y., Wen Z.-H., Zhang D.-K., Cui X.-Y. Role of selective cyclooxygenase-2 inhibitors in exacerbation of inflammatory bowel disease: a systematic review and meta-analysis. Current Therapeutic Research - Clinical and Experimental. 2008;69(3):181–191. doi: 10.1016/j.curtheres.2008.06.009.
    1. Lichtenstein G. R., Hanauer S. B., Sandborn W. J. Management of Crohn's disease in adults. The American Journal of Gastroenterology. 2009;104(2):465–483. doi: 10.1038/ajg.2008.168.
    1. Das K. M., Eastwood M. A., McManus J. P., Sircus W. Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. The New England Journal of Medicine. 1973;289(10):491–495. doi: 10.1056/nejm197309062891001.
    1. Rodríguez-Reyna T. S., Martínez-Reyes C., Yamamoto-Furusho J. K. Rheumatic manifestations of inflammatory bowel disease. World Journal of Gastroenterology. 2009;15(44):5517–5524. doi: 10.3748/wjg.15.5517.
    1. Cohen H. D., Das K. M. The metabolism of mesalamine and its possible use in colonic diverticulitis as an anti-inflammatory agent. Journal of Clinical Gastroenterology. 2006;40(supplement 3):S150–S154. doi: 10.1097/01.mcg.0000212654.28527.d0.
    1. Gan H.-T., Chen Y.-Q., Ouyang Q. Sulfasalazine inhibits activation of nuclear factor-κB in patients with ulcerative colitis. Journal of Gastroenterology and Hepatology. 2005;20(7):1016–1024. doi: 10.1111/j.1400-1746.2005.03862.x.
    1. De Keyser F., Van Damme N., De Vos M., Mielants H., Veys E. M. Opportunities for immune modulation in the spondyloarthropathies with special reference to gut inflammation. Inflammation Research. 2000;49(2):47–54. doi: 10.1007/s000110050558.
    1. Feagan B. G., Rochon J., Fedorak R. N., et al. Methotrexate for the treatment of Crohn's disease. The New England Journal of Medicine. 1995;332(5):292–297. doi: 10.1056/nejm199502023320503.
    1. Feagan B. G., Fedorak R. N., Irvine E. J., et al. A comparison of methotrexate with placebo for the maintenance of remission in Crohn's disease. The New England Journal of Medicine. 2000;342(22):1627–1632. doi: 10.1056/nejm200006013422202.
    1. Zahiroglu Y., Ulus Y., Akyol Y., et al. Spondyloarthritis Research Consortium of Canada (SPARCC) enthesitis index in turkish patients with ankylosing spondylitis: relationship with disease activity and quality of life. International Journal of Rheumatic Diseases. 2014;17(2):173–180. doi: 10.1111/1756-185x.12067.
    1. Weiss P. F. Evaluation and treatment of enthesitis-related arthritis. Current Medical Literature. Rheumatology. 2013;32(2):33–41.
    1. Zytoon A. A., Eid H., Sakr A., El Abbass H. A., Kamel M. Ultrasound assessment of elbow enthesitis in patients with seronegative arthropathies. Journal of Ultrasound. 2014;17(1):33–40. doi: 10.1007/s40477-013-0057-2.
    1. D'Agostino M.-A., Said-Nahal R., Hacquard-Bouder C., Brasseur J.-L., Dougados M., Breban M. Assessment of peripheral enthesitis in the spondylarthropathies by ultrasonography combined with power Doppler: a cross-sectional study. Arthritis & Rheumatism. 2003;48(2):523–533. doi: 10.1002/art.10812.
    1. Mouterde G., Aegerter P., Correas J.-M., Breban M., D'Agostino M.-A. Value of contrast-enhanced ultrasonography for the detection and quantification of enthesitis vascularization in patients with spondyloarthritis. Arthritis Care & Research. 2014;66(1):131–138. doi: 10.1002/acr.22195.
    1. Dougados M., Combe B., Braun J., et al. A randomised, multicentre, double-blind, placebocontrolled trial of etanercept in adults with refractory heel enthesitis in spondyloarthritis: the HEEL trial. Annals of the Rheumatic Diseases. 2010;69(8):1430–1435. doi: 10.1136/ard.2009.121533.
    1. Burgos-Vargas R., Tse S. M., Horneff G., Pangan A. L., Unnebrink K., Anderson J. K. A3: efficacy and safety of adalimumab in pediatric patients with enthesitis related arthritis. Arthritis & Rheumatology. 2014;66(supplement 3):p. S4. doi: 10.1002/art.38414.
    1. Huang Z., Cao J., Li T., Zheng B., Wang M., Zheng R. Efficacy and safety of ultrasound-guided local injections of etanercept into entheses of ankylosing spondylitis patients with refractory Achilles enthesitis. Clinical and Experimental Rheumatology. 2011;29(4):642–649.
    1. Spadaro A., Lubrano E., Marchesoni A., et al. Remission in ankylosing spondylitis treated with anti-TNF-α drugs: a national multicentre study. Rheumatology. 2013;52(10):1914–1919. doi: 10.1093/rheumatology/ket249.
    1. Coates L. C., Helliwell P. S. Disease measurement—enthesitis, skin, nails, spine and dactylitis. Best Practice and Research: Clinical Rheumatology. 2010;24(5):659–670. doi: 10.1016/j.berh.2010.05.004.
    1. Olivieri I., Scarano E., Padula A., Giasi V., Priolo F. Dactylitis, a term for different digit diseases. Scandinavian Journal of Rheumatology. 2006;35(5):333–340. doi: 10.1080/03009740600906677.
    1. Bakewell C. J., Olivieri I., Aydin S. Z., et al. Ultrasound and magnetic resonance imaging in the evaluation of psoriatic dactylitis: Status and perspectives. The Journal of Rheumatology. 2013;40(12):1951–1957. doi: 10.3899/jrheum.130643.
    1. Wolfe F., Clauw D. J., Fitzcharles M.-A., et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care & Research. 2010;62(5):600–610. doi: 10.1002/acr.20140.
    1. Karimi O., Peña A. S., van Bodegraven A. A. Probiotics (VSL#3) in arthralgia in patients with ulcerative colitis and Crohn's disease: a pilot study. Drugs of Today. 2005;41(7):453–459. doi: 10.1358/dot.2005.41.7.917341.
    1. Häuser W., Bernardy K., Arnold B., Offenbächer M., Schiltenwolf M. Efficacy of multicomponent treatment in fibromyalgia syndrome: a meta-analysis of randomized controlled clinical trials. Arthritis Care & Research. 2009;61(2):216–224. doi: 10.1002/art.24276.
    1. Calin A., Porta J., Fries J. F., Schurman D. J. Clinical history as a screening test for ankylosing spondylitis. The Journal of the American Medical Association. 1977;237(24):2613–2614. doi: 10.1001/jama.237.24.2613.
    1. van der Linden S., Valkenburg H. A., Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis and Rheumatism. 1984;27(4):361–368. doi: 10.1002/art.1780270401.
    1. Rudwaleit M., van der Heijde D., Landewé R., et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Annals of the Rheumatic Diseases. 2009;68(6):777–783. doi: 10.1136/ard.2009.108233.
    1. Yang Z., Zhao W., Liu W., Lv Q., Dong X. Efficacy evaluation of methotrexate in the treatment of ankylosing spondylitis using meta-analysis. International Journal of Clinical Pharmacology and Therapeutics. 2014;52(5):346–351. doi: 10.5414/CP202010.
    1. Barrie A., Regueiro M. Biologic therapy in the management of extraintestinal manifestations of inflammatory bowel disease. Inflammatory Bowel Diseases. 2007;13(11):1424–1429. doi: 10.1002/ibd.20196.
    1. Peake S. T. C., Bernardo D., Mann E. R., Al-Hassi H. O., Knight S. C., Hart A. L. Mechanisms of action of anti-tumor necrosis factor α agents in Crohn's disease. Inflammatory Bowel Diseases. 2013;19(7):1546–1555. doi: 10.1097/mib.0b013e318281333b.
    1. Rispo A., Scarpa R., Di Girolamo E., et al. Infliximab in the treatment of extra-intestinal manifestations of Crohn's disease. Scandinavian Journal of Rheumatology. 2005;34(5):387–391. doi: 10.1080/03009740510026698.
    1. Marzo-Ortega H., McGonagle D., O'Connor P., Emery P. Efficacy of etanercept for treatment of Crohn's related spondyloarthritis but not colitis. Annals of the Rheumatic Diseases. 2003;62(1):74–76. doi: 10.1136/ard.62.1.74.
    1. Rudwaleit M., Baeten D. Ankylosing spondylitis and bowel disease. Best Practice & Research: Clinical Rheumatology. 2006;20(3):451–471. doi: 10.1016/j.berh.2006.03.010.
    1. Terdiman J. P., Gruss C. B., Heidelbaugh J. J., Sultan S., Falck-Ytter Y. T. American gastroenterological association institute guideline on the use of thiopurines, methotrexate, and anti-TNF-alpha biologic drugs for the induction and maintenance of remission in inflammatory Crohn's disease. Gastroenterology. 2013;145(6):1459–1463. doi: 10.1053/j.gastro.2013.10.047.
    1. Heldmann F., Brandt J., van der Horst-Bruinsma I. E., et al. The European ankylosing spondylitis infliximab cohort (EASIC): a European multicentre study of long term outcomes in patients with ankylosing spondylitis treated with infliximab. Clinical and Experimental Rheumatology. 2011;29(4):672–680.
    1. Mörck B., Pullerits R., Geijer M., Bremell T., Forsblad-D'Elia H. Infliximab dose reduction sustains the clinical treatment effect in active HLAB27 positive ankylosing spondylitis: a two-year pilot study. Mediators of Inflammation. 2013;2013:9. doi: 10.1155/2013/289845.289845
    1. Rutgeerts P., Van Assche G., Sandborn W. J., et al. Adalimumab induces and maintains mucosal healing in patients with Crohn's disease: data from the EXTEND trial. Gastroenterology. 2012;142(5):1102–1111.e2. doi: 10.1053/j.gastro.2012.01.035.
    1. Sandborn W. J., Hanauer S. B., Rutgeerts P., et al. Adalimumab for maintenance treatment of Crohn's disease: results of the CLASSIC II trial. Gut. 2007;56(9):1232–1239. doi: 10.1136/gut.2006.106781.
    1. Sandborn W. J., Rutgeerts P., Enns R., et al. Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial. Annals of Internal Medicine. 2007;146(12):829–838. doi: 10.7326/0003-4819-146-12-200706190-00159.
    1. Revicki D. A., Luo M. P., Wordsworth P., Wong R. L., Chen N., Davis J. C., Jr. Adalimumab reduces pain, fatigue, and stiffness in patients with ankylosing spondylitis: results from the adalimumab trial evaluating long-term safety and efficacy for ankylosing spondylitis (ATLAS) The Journal of Rheumatology. 2008;35(7):1346–1353.
    1. Wang H., Zuo D., Sun M., Hua Y., Cai Z. Randomized, placebo controlled and double-blind trials of efficacy and safety of adalimumab for treating ankylosing spondylitis: a meta-analysis. International Journal of Rheumatic Diseases. 2014;17(2):142–148. doi: 10.1111/1756-185x.12245.
    1. Osterman M. T., Haynes K., Delzell E., et al. Comparative effectiveness of infliximab and adalimumab for Crohn's disease. Clinical Gastroenterology and Hepatology. 2013;12(5):811.e3–817.e3. doi: 10.1016/j.cgh.2013.06.010.
    1. Sandborn W. J., Feagan B. G., Marano C., et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):96.e1–109.e1. doi: 10.1053/j.gastro.2013.06.010.
    1. Braun J., Deodhar A., Inman R. D., et al. Golimumab administered subcutaneously every 4 weeks in ankylosing spondylitis: 104-week results of the GO-RAISE study. Annals of the Rheumatic Diseases. 2012;71(5):661–667. doi: 10.1136/ard.2011.154799.
    1. Sandborn W. J., Feagan B. G., Stoinov S., et al. Certolizumab pegol for the treatment of Crohn's disease. The New England Journal of Medicine. 2007;357(3):228–238. doi: 10.1056/nejmoa067594.
    1. Machado M. A., Barbosa M. M., Almeida A. M., et al. Treatment of ankylosing spondylitis with TNF blockers: a meta-analysis. Rheumatology International. 2013;33(9):2199–2213. doi: 10.1007/s00296-013-2772-6.
    1. Wendling D., Dougados M., Berenbaum F., et al. Rituximab treatment for spondyloarthritis. A nationwide series: data from the AIR registry of the French Society of Rheumatology. The Journal of Rheumatology. 2012;39(12):2327–2331. doi: 10.3899/jrheum.120201.
    1. Ghosh S., Goldin E., Gordon F. H., et al. Natalizumab for active Crohn's disease. The New England Journal of Medicine. 2003;348(1):24–32. doi: 10.1056/nejmoa020732.
    1. Gordon F. H., Hamilton M. I., Donoghue S., et al. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Alimentary Pharmacology & Therapeutics. 2002;16(4):699–705. doi: 10.1046/j.1365-2036.2002.01205.x.
    1. Sandborn W. J., Feagan B. G., Rutgeerts P., et al. Vedolizumab as induction and maintenance therapy for Crohn's disease. The New England Journal of Medicine. 2013;369(8):711–721. doi: 10.1056/nejmoa1215739.
    1. Feagan B. G., Rutgeerts P., Sands B. E., et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. The New England Journal of Medicine. 2013;369(8):699–710. doi: 10.1056/nejmoa1215734.
    1. Sandborn W. J., Gasink C., Gao L.-L., et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. The New England Journal of Medicine. 2012;367(16):1519–1528. doi: 10.1056/nejmoa1203572.
    1. McInnes I. B., Kavanaugh A., Gottlieb A. B., et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. The Lancet. 2013;382(9894):780–789. doi: 10.1016/s0140-6736(13)60594-2.
    1. Rinaudo-Gaujous M., Paul S., Tedesco E. D., Genin C., Roblin X., Peyrin-Biroulet L. Review article: biosimilars are the next generation of drugs for liver and gastrointestinal diseases. Alimentary Pharmacology & Therapeutics. 2013;38(8):914–924. doi: 10.1111/apt.12477.
    1. Casadevall N., Edwards I. R., Felix T., et al. Pharmacovigilance and biosimilars: considerations, needs and challenges. Expert Opinion on Biological Therapy. 2013;13(7):1039–1047. doi: 10.1517/14712598.2013.783560.
    1. McKeage K. A Review of CT-P13: an Infliximab Biosimilar. BioDrugs. 2014;28(3):313–321. doi: 10.1007/s40259-014-0094-1.
    1. Hlavaty T., Letkovsky J. Biosimilars in the therapy of inflammatory bowel diseases. European Journal of Gastroenterology & Hepatology. 2014;26(6):581–587. doi: 10.1097/meg.0000000000000098.

Source: PubMed

3
Tilaa