Effects of a lipid-based nutrient supplement during pregnancy and lactation on maternal plasma fatty acid status and lipid profile: Results of two randomized controlled trials

Brietta M Oaks, Rebecca R Young, Seth Adu-Afarwuah, Ulla Ashorn, Kristina H Jackson, Anna Lartey, Kenneth Maleta, Harriet Okronipa, John Sadalaki, Lacey M Baldiviez, Setti Shahab-Ferdows, Per Ashorn, Kathryn G Dewey, Brietta M Oaks, Rebecca R Young, Seth Adu-Afarwuah, Ulla Ashorn, Kristina H Jackson, Anna Lartey, Kenneth Maleta, Harriet Okronipa, John Sadalaki, Lacey M Baldiviez, Setti Shahab-Ferdows, Per Ashorn, Kathryn G Dewey

Abstract

It is unknown whether a novel small-quantity lipid-based nutrient supplement (SQ-LNS) containing alpha-linolenic (ALA) and linoleic acids impacts maternal plasma lipids and fatty acid status. We measured plasma fatty acids (wt%) and lipid concentrations at 36 wk gestation and breast milk fatty acids (wt%) at 6 months postpartum in a subsample of women enrolled in a randomized controlled trial studying the effects of SQ-LNS on birth outcomes and child growth. Women≤20 wk gestation in Ghana (n=1,320) and Malawi (n=1,391) were assigned to receive daily either: 1) iron-folic acid (pregnancy); 2) multiple micronutrients (pregnancy and lactation); or 3) SQ-LNS (pregnancy and lactation). At 36 wk, plasma ALA levels were higher in those receiving SQ-LNS. SQ-LNS increased breast milk ALA in Ghana but not Malawi. There was no effect on plasma lipids or other selected fatty acids. SQ-LNS may impact plasma and breast milk ALA levels depending on the population.

Trial registration: ClinicalTrials.gov NCT00970866 NCT01239693.

Keywords: Cholesterol; Lactation; Lipids; Omega-3 fatty acids; Pregnancy; Supplementation.

Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Fatty acid profile of maternal plasma at enrollment and 36 wk gestation and breast milk at 6 mo postpartum.
Fig. 2
Fig. 2
‘Other’ fatty acids category from Fig. 1 expanded.

References

    1. Lauritzen L., Carlson S.E. Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern. Child Nutr. 2011;7:41–58.
    1. Greenberg J.A., Bell S.J., Ausdal W.V. Omega-3 fatty acid supplementation during pregnancy. Rev. Obstet. Gynecol. 2008;1:162–169.
    1. Burdge G.C., Wootton S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002;88:411–420.
    1. Del Gobbo L.C., Imamura F., Aslibekyan S., Marklund M., Virtanen J.K., Wennberg M., Yakoob M.Y., Chiuve S.E., Dela Cruz L., Frazier-Wood A.C., Fretts A.M., Guallar E., Matsumoto C., Prem K., Tanaka T., Wu J.H., Zhou X., Helmer C., Ingelsson E., Yuan J.M., Barberger-Gateau P., Campos H., Chaves P.H., Djousse L., Giles G.G., Gomez-Aracena J., Hodge A.M., Hu F.B., Jansson J.H., Johansson I., Khaw K.T., Koh W.P., Lemaitre R.N., Lind L., Luben R.N., Rimm E.B., Riserus U., Samieri C., Franks P.W., Siscovick D.S., Stampfer M., Steffen L.M., Steffen B.T., Tsai M.Y., van Dam R.M., Voutilainen S., Willett W.C., Woodward M., Mozaffarian D. omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern. Med. 2016;176:1155–1166.
    1. Pan A., Chen M., Chowdhury R., Wu J.H., Sun Q., Campos H., Mozaffarian D., Hu F.B. alpha-linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2012;96:1262–1273.
    1. de Groot R.H.M., Hornstra G., van Houwelingen A.C., Roumen F. Effect of alpha-linolenic acid supplementation during pregnancy on maternal and neonatal polyunsaturated fatty acid status and pregnancy outcome. Am. J. Clin. Nutr. 2004;79:251–260.
    1. Brenna J.T., Salem N., Jr., Sinclair A.J., Cunnane S.C. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukot., Essent. Fat. Acids. 2009;80:85–91.
    1. Gibson R.A., Muhlhausler B., Makrides M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011;7:17–26.
    1. Michaelsen K.F., Dewey K.G., Perez-Exposito A.B., Nurhasan M., Lauritzen L., Roos N. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6–24 months), and pregnant and lactating women. Matern. Child Nutr. 2011;7:124–140.
    1. Mudd L.M., Holzman C.B., Catov J.M., Senagore P.K., Evans R.W. Maternal lipids at mid-pregnancy and the risk of preterm delivery. Acta Obstet. Et. Gynecol. Scand. 2012;91:726–735.
    1. Edison R.J., Berg K., Remaley A., Kelley R., Rotimi C., Stevenson R.E., Muenke M. Adverse birth outcome among mothers with low serum cholesterol. Pediatrics. 2007;120:723–733.
    1. Rosenberger C.M., Brumell J.H., Finlay B.B. Microbial pathogenesis: lipid rafts as pathogen portals. Curr. Biol. 2000;10:R823–R825.
    1. Woollett L.A. Where does fetal and embryonic cholesterol originate and what does it do? Annu. Rev. Nutr. 2008;28:97–114.
    1. Basaran A. Pregnancy-induced hyperlipoproteinemia: review of the literature. Reprod. Sci. 2009;16:431–437.
    1. Alleman B.W., Smith A.R., Byers H.M., Bedell B., Ryckman K.K., Murray J.C., Borowski K.S. A proposed method to predict preterm birth using clinical data, standard maternal serum screening, and cholesterol. Am. J. Obstet. Gynecol. 2013;208 (472.e471–472.411)
    1. Vrijkotte T.G.M., Krukziener N., Hutten B.A., Vollebregt K.C., van Eijsden M., Twickler M.B. Maternal lipid profile during early pregnancy and pregnancy complications and outcomes: the ABCD study. J. Clin. Endocrinol. Metab. 2012;97:3917–3925.
    1. Lokko P., Lartey A., Armar-Klemesu M., Mattes R.D. Regular peanut consumption improves plasma lipid levels in healthy Ghanaians. Int. J. Food Sci. Nutr. 2007;58:190–200.
    1. Adu-Afarwuah S., Lartey A., Okronipa H., Ashorn P., Zeilani M., Peerson J.M., Arimond M., Vosti S., Dewey K.G. Lipid-based nutrient supplement increases the birth size of infants of primiparous women in Ghana. Am. J. Clin. Nutr. 2015;101:835–846.
    1. Adu-Afarwuah S., Lartey A., Okronipa H., Ashorn P., Peerson J.M., Arimond M., Ashorn U., Zeilani M., Vosti S., Dewey K.G. Small-quantity, lipid-based nutrient supplements provided to women during pregnancy and 6 mo postpartum and to their infants from 6 mo of age increase the mean attained length of 18-mo-old children in semi-urban Ghana: a randomized controlled trial. Am. J. Clin. Nutr. 2016
    1. Ashorn P., Alho L., Ashorn U., Cheung Y.B., Dewey K.G., Harjunmaa U., Lartey A., Nkhoma M., Phiri N., Phuka J., Vosti S.A., Zeilani M., Maleta K. The impact of lipid-based nutrient supplement provision to pregnant women on newborn size in rural Malawi: a randomized controlled trial. Am. J. Clin. Nutr. 2015;101:387–397.
    1. Ashorn P., Alho L., Ashorn U., Cheung Y.B., Dewey K.G., Gondwe A., Harjunmaa U., Lartey A., Phiri N., Phiri T.E., Vosti S.A., Zeilani M., Maleta K. Supplementation of maternal diets during pregnancy and for 6 months postpartum and infant diets thereafter with small-quantity lipid-based nutrient supplements does not promote child growth by 18 months of age in rural Malawi: a randomized controlled trial. J. Nutr. 2015;145:1345–1353.
    1. Mridha M.K., Matias S.L., Chaparro C.M., Paul R.R., Hussain S., Vosti S.A., Harding K.L., Cummins J.R., Day L.T., Saha S.L., Peerson J.M., Dewey K.G. Lipid-based nutrient supplements for pregnant women reduce newborn stunting in a cluster-randomized controlled effectiveness trial in Bangladesh. Am. J. Clin. Nutr. 2016;103:236–249.
    1. Hess S.Y., Abbeddou S., Jimenez E.Y., Some J.W., Vosti S.A., Ouedraogo Z.P., Guissou R.M., Ouedraogo J.B., Brown K.H. Small-quantity lipid-based nutrient supplements, regardless of their zinc content, increase growth and reduce the prevalence of stunting and wasting in young burkinabe children: a cluster-randomized trial. PLoS One. 2015;10:e0122242.
    1. Mangani C., Maleta K., Phuka J., Cheung Y.B., Thakwalakwa C., Dewey K., Manary M., Puumalainen T., Ashorn P. Effect of complementary feeding with lipid-based nutrient supplements and corn-soy blend on the incidence of stunting and linear growth among 6–18-month-old infants and children in rural Malawi. Matern. Child Nutr. 2015;11(Suppl 4):132–143.
    1. Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of concentration of low-density lipoprotein cholesterol in plasma, without us of preparative ultracentrifuge. Clin. Chem. 1972;18:499–502.
    1. Warnick G.R., Knopp R.H., Fitzpatrick V., Branson L. Estimating low-density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationally recommended cutpoints. Clin. Chem. 1990;36:15–19.
    1. K. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P.T. James, C.M. Loria, S.C. Smith, Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity, Circulation, 120, 2009, 1640–1645.
    1. Cleeman J.I., Grundy S.M., Becker D., Clark L.T., Cooper R.S., Denke M.A., Howard W.J., Hunninghake D.B., Illingworth D.R., Luepker R.V., McBride P., McKenney J.M., Pasternak R.C., Stone N.J., Van Horn L., Brewer H.B., Ernst N.D., Gordon D., Levy D., Rifkind B., Rossouw J.E., Savage P., Haffner S.M., Orloff D.G., Proschan M.A., Schwartz J.S., Sempos C.T., Shero S.T., Murray E.Z., Natl E. cholesterol Educ program, executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) Jama-J. Am. Med. Assoc. 2001;285:2486–2497.
    1. J. Coates, A. Swindale, P. Bilinsky, Household Food Insecurity Access Scale (HFIAS) for Measurement of Household Food Access: Indicator Guide (v. 3), FHI/FANTA, 2007.
    1. Vyas S., Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21:459–468.
    1. Streiner D.L. Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests. Am. J. Clin. Nutr. 2015
    1. Wood K.E., Mantzioris E., Gibson R.A., Ramsden C.E., Muhlhausler B.S. The effect of modifying dietary LA and ALA intakes on omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) status in human adults: a systematic review and commentary. Prostaglandins Leukot. Essent. Fat. Acids. 2015;95:47–55.
    1. Jimenez E.Y., Mangani C., Ashorn P., Harris W.S., Maleta K., Dewey K.G. Breast milk from women living near Lake Malawi is high in docosahexaenoic acid and arachidonic acid. Prostaglandins Leukot. Essent. Fat. Acids. 2015;95:71–78.
    1. Brenna J.T., Varamini B., Jensen R.G., Diersen-Schade D.A., Boettcher J.A., Arterburn L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007;85:1457–1464.
    1. Jackson K.H., Polreis J., Sanborn L., Chaima D., Harris W.S. Analysis of breast milk fatty acid composition using dried milk samples. Int. Breastfeed. J. 2016;11:1.
    1. Barman M., Jonsson K., Sandin A., Wold A.E., Sandberg A.S. Serum fatty acid profile does not reflect seafood intake in adolescents with atopic eczema. Acta Paediatr. 2014;103:968–976.
    1. Schafer F.Q., Qian S.Y., Buettner G.R. Iron and free radical oxidations in cell membranes. Cell. Mol. Biol. 2000;46:657–662.
    1. Peter S., Moser U., Pilz S., Eggersdorfer M., Weber P. The challenge of setting appropriate intake recommendations for vitamin E: considerations on status and functionality to define nutrient requirements. Int. journal for Vitamin Nutr. Res. Int. Zeitschrift fur Vitamin- und Ernahrungsforschung. J. Int. de Vitaminol. et de Nutr. 2013;83:129–136.
    1. Gupta M., Solanki M.H., Chatterjee P.K., Xue X., Roman A., Desai N., Rochelson B., Metz C.N. Maternal magnesium deficiency in mice leads to maternal metabolic dysfunction and altered lipid metabolism with fetal growth restriction. Mol. Med. 2014;20:332–340.
    1. O'Byrne D.J., Knauft D.A., Shireman R.B. Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids. 1997;32:687–695.
    1. Alper C.M., Mattes R.D. Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J. Am. Coll. Nutr. 2003;22:133–141.
    1. Ezaki O., Takahashi M., Shigematsu T., Shimamura K., Kimura J., Ezaki H., Gotoh T. Long-term effects of dietary alpha-linolenic acid from perilla oil on serum fatty acids composition and on the risk factors of coronary heart disease in Japanese elderly subjects. J. Nutr. Sci. Vitaminol. 1999;45:759–772.
    1. Harris W.S., Thomas R.M. Biological variability of blood omega-3 biomarkers. Clin. Biochem. 2010;43:338–340.
    1. Harris W.S., Varvel S.A., Pottala J.V., Warnick G.R., McConnell J.P. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: implications for clinical utility. J. Clin. Lipido. 2013;7:433–440.
    1. Mora S., Rifai N., Buring J.E., Ridker P.M. Fasting compared with nonfasting lipids and apolipoproteins for predicting incident cardiovascular events. Circulation. 2008;118:993–1001.
    1. Langsted A., Freiberg J.J., Nordestgaard B.G. Fasting and nonfasting lipid levels influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation. 2008;118:2047–2056.

Source: PubMed

3
Tilaa