Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis

Tatiana Koudriavtseva, Annunziata Stefanile, Marco Fiorelli, Caterina Lapucci, Svetlana Lorenzano, Silvana Zannino, Laura Conti, Giovanna D'Agosto, Fulvia Pimpinelli, Enea Gino Di Domenico, Chiara Mandoj, Diana Giannarelli, Sara Donzelli, Giovanni Blandino, Marco Salvetti, Matilde Inglese, Tatiana Koudriavtseva, Annunziata Stefanile, Marco Fiorelli, Caterina Lapucci, Svetlana Lorenzano, Silvana Zannino, Laura Conti, Giovanna D'Agosto, Fulvia Pimpinelli, Enea Gino Di Domenico, Chiara Mandoj, Diana Giannarelli, Sara Donzelli, Giovanni Blandino, Marco Salvetti, Matilde Inglese

Abstract

Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism "immunothrombosis" linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients.

Materials and methods: This is a multi-center, prospective, controlled study. RRMS patients (1° group: 30 patients in relapse; 2° group: 30 patients in remission) and age/sex-matched controls (3° group: 30 subjects) will be enrolled in the study. Patients and controls will be tested for either coagulation/complement (C3, C4, C4a, C9, PT, aPTT, fibrinogen, factor II, VIII, and X, D-dimer, antithrombin, protein C, protein S, von-Willebrand factor), soluble markers of endothelial damage (thrombomodulin, Endothelial Protein C Receptor), antiphospholipid antibodies, lupus anticoagulant, complete blood count, viral serological assays, or microRNA microarray. Patients will undergo dynamic susceptibility contrast-enhanced MRI using a 3.0-T scanner to evaluate CBF, CBV, MTT, lesion number, and volume.

Statistical analysis: ANOVA and unpaired t-tests will be used. The level of significance was set at p ≤ 0.05.

Discussion: Identifying a link between activation of coagulation/complement system and cerebral hypoperfusion could improve the identification of novel molecular and/or imaging biomarkers and targets, leading to the development of new effective therapeutic strategies in MS.

Clinical trial registration: Clinicaltrials.gov, identifier NCT04380220.

Keywords: cerebral hypoperfusion; coagulation; complement; infection; multiple sclerosis; platelets; relapse.

Copyright © 2020 Koudriavtseva, Stefanile, Fiorelli, Lapucci, Lorenzano, Zannino, Conti, D’Agosto, Pimpinelli, Di Domenico, Mandoj, Giannarelli, Donzelli, Blandino, Salvetti and Inglese.

Figures

Figure 1
Figure 1
Flow chart of the study protocol.
Figure 2
Figure 2
Luminex Assay Principle. The sample is added to the mixture of colored beads coated with specific antibodies that bind the analyte of interest, the biotinylated detection antibodies in turn bind the analyte, and an analyte-antibody sandwich is formed. Streptoavidin conjugated with phycoerythrin (PE) binds biotinylated detection antibodies. The analysis of the beads is carried out either in a double laser flow with the Luminex 200 instrument or inside a magnet with the Luminex MAGPIX analyzer. The signal strength of phycoerythrin is directly proportional to the concentration of the specific analyte.
Figure 3
Figure 3
Workflow of circulating miRNA profiling. For circulating miRNA profiling blood samples from patients will be processed. In particular, circulating RNA will be extracted from serum samples with a column-based extraction method. Total and small RNA quality will be assessed by Bioanalyzer. Then, total RNA will be labelled for the hybridization to Human miRNA Microarray Release 21 (Agilent) containing probes for 2549 human miRNAs. Microarray data will be subjected to bioinformatic analysis to identify a signature of miRNAs differentially expressed. Deregulated miRNAs pathway analysis and correlations analysis with clinical variables will be performed.
Figure 4
Figure 4
DSC perfusion maps and their overlap with structural masks in an MS patient. (A). AIF curve created by using global, automatic, and outside-artery technique (B). Leakage map, obtained through the leakage correction function, to minimize leakage effect both on Gadolinium and no Gadolinium enhancing lesions (C). a. CBV map; b. CBF map; c. MTT map. (D). a. NAWM (red), obtained by subtracting from white matter (WM binary) masks the different types of lesions, linearly registered to CBV map; b. thalamus (yellow), caudate (green), putamen (light blue), globus pallidus (blue), obtained by using FIRST software, linearly registered to CBV map. AIF, arterial input function; CBV, cerebral blood volume; CBF, cerebral blood flow; MTT, mean transit time; NAWM, normal appearing white matter.

References

    1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple Sclerosis. N Engl J Med (2000) 343:938–52. 10.1056/NEJM200009283431307
    1. Sospedra M, Martin R. Immunology of multiple sclerosis. Ann Rev Immunol (2005) 23:683–747. 10.1146/annurev.immunol.23.021704.11570
    1. Disanto G, Morahan JM, Barnett MH, Giovannoni G, Ramagopalan SV. The evidence for a role of B cells in multiple sclerosis. Neurology (2012) 78:823–32. 10.1212/WNL.0b013e318249f6f0
    1. Weiner HL. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol (2008) 255(Suppl 1):3–11. 10.1007/s00415-008-1002-8
    1. Gandhi R, Laroni A, Weiner HL. Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol (2010) 221(1–2):7–14. 10.1016/j.jneuroim.2009.10.015
    1. Mayo L, Quintana FJ, Weiner HL. The innate immune system in demyelinating disease. Immunol Rev (2012) 248:170–87. 10.1111/j.1600-065X.2012.01135.x
    1. Esmon CT. Interactions between the innate immune and blood coagulation systems. Trends Immunol (2004) 25:536–42. 10.1016/j.it.2004.08.003
    1. Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost (2011) 9(Suppl 1):182–8. 10.1111/j.1538-7836.2011.04323.x
    1. Esmon CT. Protein C anticoagulant system–anti-inflammatory effects. Semin Immunopathol (2012) 34:127–32. 10.1007/s00281-011-0284-6
    1. Danckwardt S, Hentze MW, Kulozik AE. Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med (Berl) (2013) 91:1257–71. 10.1007/s00109-013-1074-5
    1. Van der Poll T, Levi M. Crosstalk between inflammation and coagulation: the lessons of sepsis. Curr Vasc Pharmacol (2012) 10:632–8. 10.2174/157016112801784549
    1. Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost (2018) 2:549–57. 10.1002/rth2.12109
    1. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol (2013) 13:34–45. 10.1038/nri3345
    1. Putnam TJ. Lesions of encephalomyelitis and multiple sclerosis. Venous thrombosis as the primary alteration. JAMA (1937) 108:1477–80. 10.1001/jama.1937.02780180001001
    1. Plantone D, Inglese M, Salvetti M, Koudriavtseva T. A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis. Front Neurol (2019) 9:1175. 10.3389/fneur.2018.01175
    1. Han MH, Hwang S-I, Roy DB, Lundgren DH, Price JV, Ousman SS, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature (2008) 451:1076–81. 10.1038/nature06559
    1. Weisel JW. Fibrinogen and Fibrin. Adv Protein Chem (2005) 70:247–99. 10.1016/S0065-3233(05)70008-5
    1. Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol (2012) 34:43–62. 10.1007/s00281-011-0290-8
    1. Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein IIb-IIIa complex. Blood (1988) 71:831–43. 10.1182/blood.V71.4.831.831
    1. Miranda Acuña J, Hidalgo de la Cruz M, Ros AL, Tapia SP, Martínez Ginés ML, de Andrés Frutos CD. Elevated plasma fibrinogen levels in multiple sclerosis patients during relapse. Mult Scler Relat Disord (2017) 18:157–60. 10.1016/j.msard.2017.09.033
    1. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med (2002) 8:500–8. 10.1038/nm0502-500
    1. Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exdoiop Med (2007) 204:571–82. 10.1084/jem.20061931
    1. Davalos D, Kyu Ryu J, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun (2012) 3:1227. 10.1038/ncomms2230
    1. Fan ST, Edgington TS. Coupling of the adhesive receptor CD11b/CD18 to functional enhancement of effector macrophage tissue factor response. J Clin Invest (1991) 87:50–7. 10.1172/JCI115000
    1. Fan ST, Edgington TS. Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-alpha responses of monocytes. J Immunol (1993) 150(7):2972–80.
    1. Flick MJ, Du X, Witte DP, Jirousková M, Soloviev DA, Busuttil SJ, et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo . J Clin Invest (2004) 113:1596–606. 10.1172/JCI20741
    1. Kwon EE, Prineas JW. Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J Neuropathol Exp Neurol (1994) 53:625–36. 10.1097/00005072-199411000-00010
    1. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol (1995) 90:228–38. 10.1007/BF00296505
    1. Gveric D, Hanemaaijer R, Newcombe J, van Lent NA, Sier CF, Cuzner ML. Plasminogen activators in multiple sclerosis lesions: implications for the inflammatory response and axonal damage. Brain (2001) 124:1978–88. 10.1093/brain/124.10.1978
    1. Ryu JK, Rafalski VA, Meyer-Franke A, Adams RA, Poda SB, Rios Coronado PE, et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol (2018) 19:1212–23. 10.1038/s41590-018-0232-x
    1. Göbel K, Kraft P, Pankratz S, Gross CC, Korsukewitz C, Kwiecien R, et al. Prothrombin and factor X are elevated in multiple sclerosis patients. Ann Neurol (2016) 80:946–51. 10.1002/ana.24807
    1. Parsons ME, O’Connell K, Allen S, Egan K, Szklanna PB, McGuigan C, et al. Thrombin generation correlates with disease duration in multiple sclerosis (MS): novel insights into the MS-associated prothrombotic state. Mult Scler J Exp Transl Clin (2017) 3(4):2055217317747624, pp 1-7.
    1. Fiorini A, Koudriavtseva T, Bucaj E, Coccia R, Foppoli C, Giorgi A, et al. Involvement of oxidative stress in occurrence of relapses in multiple sclerosis: the spectrum of oxidatively modified serum proteins detected by proteomics and redox proteomics analysis. PloS One (2013) 8:e65184. 10.1371/journal.pone.006518
    1. Stavrou EX, Schmaier AH. Venous and arterial thrombosis. In: Willis MS, Homeister JW, Stone JR, editors. Cellular and Molecular Pathobiology of Cardiovascular Disease. London: Academic Press; (2014). p. 277–96. 10.1016/B978-0-12-405206-2.00015-6
    1. Uzawa A, Mori M, Masuda H, Ohtani R, Uchida T, Kuwabara S. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines. Clin Exp Immunol (2018) 193:47–54. 10.1111/cei.13123
    1. Esmon C. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost (2006) 32:49–60. 10.1055/s-2006-939554
    1. Festoff BW, Li C, Woodhams B, Lynch S. Soluble thrombomodulin levels in plasma of multiple sclerosis patients and their implication. J Neurol Sci (2012) 323:61–5. 10.1016/j.jns.2012.08.008
    1. Griffin JH, Fernández JA, Mosnier LO, Liu D, Cheng T, Guo H, et al. The promise of protein C. Blood Cells Mol Dis (2006) 36:211–6. 10.1016/j.bcmd.2005.12.023
    1. Griffin JH, Fernandez JA, Gale AJ, Mosnier LO. Activated protein C. J Thromb Haemost (2007) 5:73–80. 10.1111/j.1538-7836.2007.02491.x
    1. Xue M, Dervish S, Harrison LC, Fulcher G, Jackson CJ. Activated protein C inhibits pancreatic islet inflammation, stimulates T regulatory cells, and prevents diabetes in non-obese diabetic (NOD). Mice J Biol Chem (2012) 287:16356–64. 10.1074/jbc.M111.325951
    1. Yuksel M, Okajima K, Uchiba M, Horiuchi S, Okabe H. Activated protein C inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappa B and activator protein-1 in human monocytes. Thromb Haemost (2002) 88:267–73. 10.1055/s-0037-1613197
    1. Yamaji K, Wang Y, Liu Y, Abeyama K, Hashiguchi T, Uchimura T, et al. Activated protein C, a natural anticoagulant protein, has antioxidant properties and inhibits lipid peroxidation and advanced glycation end products formation. Thromb Res (2005) 115:319–25. 10.1016/j.thromres.2004.09.011
    1. Genc K. Activated protein C: Possible therapeutic implications for multiple sclerosis. Med Hypotheses (2007) 68:710. 10.1016/j.mehy.2006.09.004
    1. Kirichuk VF, Streknev AG. The role of hemostasis system in the pathogenesis and course of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova (2003) 2:34–8.
    1. Koudriavtseva T, Plantone D, Renna R. Antiphospholipid antibodies: a possible biomarker of disease activity in multiple sclerosis and neuromyelitis optica spectrum disorders. J Neurol (2014. a) 261:2028–9. 10.1007/s00415-014-7506-5
    1. Zivadinov R, Ramanathan M, Ambrus J, Hussein S, Ramasamy DP, Dwyer MG, et al. Anti-phospholipid antibodies are associated with response to interferon-beta1a treatment in MS: results from a 3-year longitudinal study. Neurol Res (2012) 34:761–9. 10.1179/1743132812Y.0000000076
    1. Spadaro M, Amendolea MA, Mazzucconi MG, Fantozzi R, Di Lello R, Zangari P, et al. Autoimmunity in multiple sclerosis: study of a wide spectrum of autoantibodies. Mult Scler (1999) 5:121–5. 10.1177/135245859900500209
    1. Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot C, Jr, Ahn YS, et al. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study. BMC Neurol (2007) 7:36. 10.1186/1471-2377-7-36
    1. Garg N, Zivadinov R, Ramanathan M, Vasiliu I, Locke J, Watts K, et al. Clinical and MRI correlates of autoreactive antibodies in multiple sclerosis patients. J Neuroimmunol (2007) 187:159–65. 10.1016/j.jneuroim.2007.04.008
    1. Koudriavtseva T, D’Agosto G, Mandoj C, Sperduti I, Cordiali-Fei P. High frequency of antiphospholipid antibodies in relapse of multiple sclerosis: a possible indicator of inflammatory-thrombotic processes. Neurol Sci (2014. b) 35:1737–41. 10.1007/s10072-014-1823-4
    1. Mandoj C, Renna R, Plantone D, Sperduti I, Cigliana G, Conti L, et al. Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci Lett (2015) 606:156–60. 10.1016/j.neulet.2015.08.054
    1. Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig (2018) 38:653–71. 10.1007/s40261-018-0656-y
    1. Horstman LL, Jy W, Ahn YS, Maghzi AH, Etemadifar M, Alexander JS, et al. Complement in neurobiology. Front Biosci (Landmark Ed) (2011) 16:2921–60. 10.2741/3890
    1. Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, et al. Complement in neurobiology. Front Biosci (Landmark Ed) (2011) 16:2921–60. 10.2741/3890
    1. Ingram G, Hakobyan S, Hirst CL, Harris CL, Loveless S, Mitchell JP, et al. Systemic complement profiling in multiple sclerosis as a biomarker of disease state. Mult Scler (2012) 18:1401–11. 10.1177/1352458512438238
    1. Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun (2014) 2:53. 10.1186/2051-5960-2-53
    1. Tatomir A, Talpos-Caia A, Anselmo F, Kruszewski AM, Boodhoo D, Rus V, et al. The complement system as a biomarker of disease activity and response to treatment in multiple sclerosis. Immunol Res (2017) 65:1103–9. 10.1007/s12026-017-8961-8
    1. Saluk-Bijak J, Dziedzic A, Bijak M. Pro-Thrombotic Activity of Blood Platelets in Multiple Sclerosis. Cells (2019) 8(2):pii: E110. 10.3390/cells8020110
    1. Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci (2019) 11:151:151. 10.3389/fnagi.2019.00151
    1. Sheremata WA, Jy W, Horstman LL, Alexander JS, Minagar A. Evidence of platelet activation in multiple sclerosis. J Neuroinflamm (2008) 5:1–6. 10.1186/1742-2094-5-27
    1. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood (2014) 123:2759–67. 10.1182/blood-2013-11-462432
    1. Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflamm (2010) 7:10. 10.1186/1742-2094-7-10
    1. Wachowicz B, Morel A, Miller E, Saluk J. The physiology of blood platelets and changes of their biological activities in multiple sclerosis. Acta Neurobiol Exp (2016) 76:269–81. 10.21307/ane-2017-026
    1. Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, et al. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets (2015) 26:507–20. 10.3109/09537104.2015.1064881
    1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci (2015) 8:35. 10.3389/fnmol.2015.00035
    1. Dahiya N, Sarachana T, Vu L, Becker KG, Wood WH, Zhang Y, et al. Platelet microRNAs: an overview. Transfus Med Rev (2015) 29:215–9. 10.1016/j.tmrv.2015.08.002
    1. Ebrahimkhani S, Vafaee F, Young PE, Hur SS, Hawke S, Devenney E, et al. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep (2017) 7:14293. 10.1038/s41598-017-14301-3
    1. Jagot F, Davoust N. Is it worth considering circulating microRNAs in multiple sclerosis? Front Immunol (2016) 7:129:129. 10.3389/fimmu.2016.00129
    1. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res (2012) 110:1202–10. 10.1161/CIRCRESAHA.111.256370
    1. Soon D, Tozer DJ, Altmann DR, Tofts PS, Miller DH. Quantification of subtle blood-brain barrier disruption in non-enhancing lesions in multiple sclerosis: a study of disease and lesion subtypes. Mult Scler (2007) 13:884–94. 10.1177/1352458507076970
    1. Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol (2002) 12:154–69. 10.1111/j.1750-3639.2002.tb00430.x
    1. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol (2003) 201:319–27. 10.1002/path.1434
    1. Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, et al. Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol (2011) 70:764–73. 10.1002/ana.22521
    1. Varga AW, Johnson G, Babb JS, Herbert J, Grossman RI, Inglese M. White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci (2009) 282:28–33. 10.1016/j.jns.2008.12.036
    1. Adhya S, Johnson G, Herbert J, Jaggi H, Babb JS, Grossman RI, et al. Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage (2006) 33:1029–35. 10.1016/j.neuroimage.2006.08.008
    1. Inglese M, Adhya S, Johnson G, Babb JS, Miles L, Jaggi H, et al. Perfusion magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J Cereb Blood Flow Metab (2008) 28:164–71. 10.1038/sj.jcbfm.9600504
    1. Koudriavtseva T. Thrombotic processes in multiple sclerosis as manifestation of innate immune activation. Front Neurol (2014) 5:119. 10.3389/fneur.2014.00119
    1. Koudriavtseva T, Renna R, Plantone D, Mainero C. Demyelinating and thrombotic diseases of the central nervous system: common pathogenic and triggering factors. Front Neurol (2015) 6:63:63. 10.3389/fneur.2015.00063
    1. Murta V, Ferrari CC. Influence of Peripheral inflammation on the progression of multiple sclerosis: evidence from the clinic and experimental animal models. Mol Cell Neurosci (2013) 53:6–13. 10.1016/j.mcn.2012.06.004
    1. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, et al. Inflammation in neurodegenerative diseases–an update. Immunology (2014) 142:151–66. 10.1111/imm.12233
    1. Koudriavtseva T, Mainero C. Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: intercorrelated manifestations of the immune response. Neural Regener Res (2016) 11:1727–30. 10.4103/1673-5374.194804
    1. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood (2014) 123:2605–13. 10.1182/blood-2013-09-526277
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost (2020) 18:844–7. 10.1111/jth.14768
    1. Kirk J, Zhou AL. Viral infection at the blood-brain barrier in multiple sclerosis:–an ultrastructural study of tissues from a UK Regional Brain Bank. Mult Scler (1996) 1:242–52. 10.1177/135245859600100410
    1. Boesen MS, Koch-Henriksen N, Thygesen LC, Eriksson F, Greisen G, Born AP, et al. Infections seem to be more frequent before onset of pediatric multiple sclerosis: a Danish nationwide nested case-control study. Mult Scler (2018) 25:783–91. 10.1177/1352458518771871
    1. Steelman AJ. Infection as an Environmental Trigger of Multiple Sclerosis Disease Exacerbation. Front Immunol (2015) 6:520. 10.3389/fimmu.2015.00520
    1. Simpson S, Taylor B, Dwyer DE, Taylor J, Blizzard L, Ponsonby AL, et al. Anti-HHV-6 IgG titer significantly predicts subsequent relapse risk in multiple sclerosis. Mult Scler (2012) 18:799–806. 10.1177/1352458511428081
    1. Sibley WA, Foley JM. Infection and immunization in multiple sclerosis. Ann N Y Acad Sci (1965) 122:457–66. 10.1111/j.1749-6632.1965.tb20229.x
    1. Correale J, Fiol M, Gilmore W. The risk of relapses in multiple sclerosis during systemic infections. Neurology (2006) 67:652–9. 10.1212/01.wnl.0000233834.09743.3b
    1. Oikonen M, Laaksonen M, Aalto V, Ilonen J, Salonen R, Erälinna JP, et al. Temporal relationship between environmental influenza A and Epstein-Barr viral infections and high multiple sclerosis relapse occurrence. Mult Scler (2011) 17:672–80. 10.1177/1352458510394397
    1. Saberi A, Akhondzadeh S, Kazemi S. Infectious agents and different course of multiple sclerosis: a systematic review. Acta Neurol Belg (2018) 118:361–77. 10.1007/s13760-018-0976-y
    1. Alonso R, Fernández-Fernández AM, Pisa D, Carrasco L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiol Dis (2018) 117:42–61. 10.1016/j.nbd.2018.05.02292
    1. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol (2005) 58:840–6. 10.1002/ana.20703
    1. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol (2001) 50:121–7. 10.1002/ana.1032
    1. Thrower BW. Relapse management in multiple sclerosis. Neurologist (2009) 15:1–5. 10.1097/NRL.0b013e31817acf1a
    1. Kadam RA. Informed consent process: A step further towards making it meaningful! Perspect Clin Res (2017) 8:107–12. 10.4103/picr.PICR_147_16
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology (1983) 33:1444–52. 10.1212/WNL.33.11.1444
    1. Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain (1999) 122(Pt 5):871–82. 10.1093/brain/122.5.871
    1. Gens S, Dervisoglu E, Erdem S, Arslan O, Aktan M, Omer B. Comparison of performance and abnormal cell lagging of two automated hematology analyzers: Sysmex XN 3000 and Beckman Coulter DxH 800. Int J Lab Hematol (2017) 39:633–40. 10.1111/ijlh.12717
    1. Barnes PW, Eby CS, Shimer G. Blast flagging with the UniCel DxH 800 Coulter Cellular Analysis System. Lab Hematol (2010) 16:23–5. 10.1532/LH96.09015
    1. Hedley BD, Keeney M, Chin-Yee I, Brown W. Initial performance evaluation of the UniCel® DxH 800 Coulter® cellular analysis system. Int J Lab Hematol (2011) 33:45–56. 10.1111/j.1751-553X.2010.01239.x
    1. Baker HN, Murphy R, Lopez E, Garcia C. Conversion of a capture ELISA to a Luminex xMAP assay using a multiplex antibody screening method. J Vis Exp (2012) (65):4084. 10.3791/4084
    1. Zhang Y, Li X, Di YP. Fast and Efficient Measurement of Clinical and Biological Samples Using Immunoassay-Based Multiplexing Systems. Methods Mol Biol (2020) 2102:129–47. 10.1007/978-1-0716-0223-2_6
    1. Huber AR, Méndez A, Brunner-Agten S. Automation in haemostasis. Hamostaseologie (2013) 33:295–8. 10.5482/HAMO-12-05-0002
    1. Gardiner C, Kitchen S, Dauer R, Kottke-Marchant K, Adcock D. Recommendations for evaluation of coagulation analyzers. Lab Hematol (2006) 12:32–8. 10.1532/LH96.05031
    1. Geens T, Vertessen F, Malfait R, Deiteren K, Maes M. Validation of the Sysmex CS5100 coagulation analyzer and comparison to the Stago STA-R analyzer for routine coagulation parameters. Int J Lab Hematol (2015) 37:372–8. 10.1111/ijlh.12295
    1. Salvagno GL, Lippi G, Gelati M, Guidi GC. Hemolysis, lipaemia and icterus in specimens for arterial blood gas analysis. Clin Biochem (2012) 45:372–3. 10.1016/j.clinbiochem.2011.12.005
    1. Kwoun WJ, Ahn JY, Park PW, Seo YH, Kim KH, Seo JY, et al. Performance Evaluation of the Preanalytic Module of the ACL TOP 750 Hemostasis Lab System. Ann Lab Med (2018) 38:484–6. 10.3343/alm.2018.38.5.484
    1. Tokunaga N, Inoue C, Sakata T, Kagawa K, Abe M, Takamatsu N, et al. Usefulness of the second-derivative curve of activated partial thromboplastin time on the ACL-TOP coagulation analyzer for detecting factor deficiencies. Blood Coagul Fibrinolysis (2016) 27:474–6. 10.1097/MBC.0000000000000436
    1. Solano C, Zerefa P, Bird R. A study of atypical APTT derivative curves on the ACL-TOP coagulation analyser. Int J Lab Hematol (2011) 33:67–78. 10.1111/j.1751-553X.2010.01248.x
    1. James PD, Lillicrap D. von Willebrand disease: clinical and laboratory lessons learned from the large von Willebrand disease studies. Am J Hematol (2012) 87:S4–11. 10.1002/ajh.23142
    1. Appert-Flory A, Fischer F, Jambou D, Toulon P. Evaluation and performance characteristics of the automated coagulation analyzer ACL TOP. Thromb Res (2007) 120:733–43. 10.1016/j.thromres.2006.12.002
    1. Barnes PW, Eby CS. An evaluation of the performance characteristics of the ACL TOP® coagulation system [abstract]. Clin Chem (2004) 50(S6):A184.
    1. Prohászkaa Z, Nilssonb B, Frazer-Abel A, Kirschfink M. Complement analysis 2016: Clinical indications, laboratory diagnostics and quality control. Immunobiology (2016) 221:1247–58. 10.1016/j.imbio.2016.06.008
    1. Ling M, Murali M. Analysis of the Complement System in the Clinical Immunology Laboratory. Clin Lab Med (2019) 39:579–90. 10.1016/j.cll.2019.07.006
    1. Li H, Lin S, Yang S, Chen L, Zheng X. Diagnostic value of serum complement C3 and C4 levels in Chinese patients with systemic lupus erythematosus. Clin Rheumatol (2015) 34:471–7. 10.1007/s10067-014-2843-4
    1. Qu C, Zhang J, Zhang X, Du J, Su B, Li H. Value of combined detection of anti-nuclear antibody, anti-double-stranded DNA antibody and C3, C4 complements in the clinical diagnosis of systemic lupus erythematosus. Exp Ther Med (2019) 17:1390–4. 10.3892/etm.2018.7072
    1. Martin M, Smoląg KI, Björk A, Gullstrand B, Okrój M, Leffler J, et al. Plasma C4d as marker for lupus nephritis in systemic lupus erythematosus. Arthritis Res Ther (2017) 19:266. 10.1186/s13075-017-1470-2
    1. Tebo AE. Laboratory Evaluation of Antiphospholipid Syndrome: An Update on Autoantibody Testing. Clin Lab Med (2019) 39:553–65. 10.1016/j.cll.2019.07.004
    1. Lakos G, Favaloro EJ, Harris EN, Meroni PL, Tincani A, Wong RC, et al. International consensus guidelines on anticardiolipin and anti-β2-glycoprotein I testing: report from the 13th International Congress on Antiphospholipid Antibodies. Arthritis Rheumatol (2012) 64:1–10. 10.1002/art.33349
    1. Capozzi A, Lococo E, Grasso M, Longo A, Garofalo T, Misasi R, et al. Detection of antiphospholipid antibodies by automated chemiluminescence assay. J Immunol Methods (2012) 379(1-2):48–52. 10.1016/j.jim.2012.02.020
    1. De Craemer AS, Musial J, Devreese KM. Role of anti-domain 1-β2 glycoprotein I antibodies in the diagnosis and risk stratification of antiphospholipid syndrome. J Thromb Haemost (2016) 14:1779–87. 10.1111/jth.13389
    1. Devreese KM, Poncet A, Lindhoff-Last E, Musial J, de Moerloose P, Fontana P. A multicenter study to assess the reproducibility of antiphospholipid antibody results produced by an automated system. J Thromb Haemost (2017) 15:91–5. 10.1111/jth.13560
    1. Martins TB, Heikal N, Miller J, Willis R, Schmidt RL, Tebo AE. Assessment of diagnostic methods for the detection of anticardiolipin and anti-βeta2 glycoprotein I antibodies in patients under routine evaluation for antiphospholipid syndrome. Clin Chim Acta (2018) 485:7–13. 10.1016/j.cca.2018.06.008
    1. Wan LY, Gu JY, Liu TT, Hu QY, Jia JC, Teng JL, et al. Clinical performance of automated chemiluminescent methods for anticardiolipin and anti-β2-glycoprotein I antibodies detection in a large cohort of Chinese patients with antiphospholipid syndrome. Int J Lab Hematol (2020) 42(2):206–13. 10.1111/ijlh.13156
    1. Iwaniec T, Kaczor MP, Celinska-Lowenhoff M, Polanski S, Musial J. Clinical utility of automated chemiluminescent antiphospholipid antibody assay. Thromb Res (2015) 136:1033–9. 10.1016/j.thromres.2015.08.021
    1. Calamante F. Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc (2013) 74:1–32. 10.1016/j.pnmrs.2013.04.002
    1. Lapointe E, Li DKB, Traboulsee AL, Rauscher A. What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol (2018) 39:994–1000. 10.3174/ajnr.A5504
    1. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med (1995) 34:555–66. 10.1002/mrm.1910340412

Source: PubMed

3
Tilaa