ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines

P Lassalle, S Molet, A Janin, J V Heyden, J Tavernier, W Fiers, R Devos, A B Tonnel, P Lassalle, S Molet, A Janin, J V Heyden, J Tavernier, W Fiers, R Devos, A B Tonnel

Abstract

We here report the identification of a novel human endothelial cell-specific molecule (called ESM-1) cloned from a human umbilical vein endothelial cell (HUVEC) cDNA library. Constitutive ESM-1 gene expression (as demonstrated by Northern blot and reverse transcription-polymerase chain reaction analysis) was found in HUVECs but not in the other human cell lines tested. The cDNA sequence contains an open reading frame of 552 nucleotides and a 1398-nucleotide 3'-untranslated region including several domains involved in mRNA instability and five putative polyadenylation consensus sequences. The deduced 184-amino acid sequence defines a cysteine-rich protein with a functional NH2-terminal hydrophobic signal sequence. Searches in several data bases confirmed the unique identity of this sequence. A rabbit immune serum raised against the 14-kDa COOH-terminal peptide of ESM-1 immunoprecipitated a 20-kDa protein only in ESM-1-transfected COS cells. Immunoblotting and immunoprecipitation of HUVEC lysates revealed a specific 20-kDa band corresponding to ESM-1. In addition, constitutive ESM-1 gene expression was shown to be tissue-restricted to the human lung. Southern blot analysis suggests that a single gene encodes ESM-1. A time-dependent up-regulation of ESM-1 mRNA was seen after addition of tumor necrosis factor alpha (TNFalpha) or interleukin (IL)-1beta but not with IL-4 or interferon gamma (IFNgamma) alone. In addition, when IFNgamma was combined with TNFalpha, IFNgamma inhibited the TNFalpha-induced increase of ESM-1 mRNA level. These data suggest that ESM-1 may have potent implications in the areas of vascular cell biology and human lung physiology.

Source: PubMed

3
Tilaa