Exercise intervention protocol in children and young adults with cerebral palsy: the effects of strength, flexibility and gait training on physical performance, neuromuscular mechanisms and cardiometabolic risk factors (EXECP)

Pedro Valadão, Harri Piitulainen, Eero A Haapala, Tiina Parviainen, Janne Avela, Taija Finni, Pedro Valadão, Harri Piitulainen, Eero A Haapala, Tiina Parviainen, Janne Avela, Taija Finni

Abstract

Background: Individuals with cerebral palsy (CP) have problems in everyday tasks such as walking and climbing stairs due to a combination of neuromuscular impairments such as spasticity, muscle weakness, reduced joint flexibility and poor coordination. Development of evidence-based interventions are in pivotal role in the development of better targeted rehabilitation of CP, and thus in maintaining their motor function and wellbeing. Our aim is to investigate the efficacy of an individually tailored, multifaceted exercise intervention (EXECP) in children and young adults with CP. EXECP is composed of strength, flexibility and gait training. Furthermore, this study aims to verify the short-term retention of the adaptations three months after the end of the EXECP intervention.

Methods: Twenty-four children and young adults with spastic CP will be recruited to participate in a 9-month research project with a 3-month training intervention, consisting of two to three 90-min sessions per week. In each session, strength training for the lower limbs and trunk muscles, flexibility training for the lower limbs and inclined treadmill gait training will be performed. We will evaluate muscle strength, joint flexibility, neuromuscular and cardiometabolic parameters. A nonconcurrent multiple baseline design with two pre-tests and two post-tests all interspaced by three months is used. In addition to the CP participants, 24 typically developing age and sex-matched participants will perform the two pre-tests (i.e. no intervention) to provide normative data.

Discussion: This study has a comprehensive approach examining longitudinal effects of wide variety of variables ranging from physical activity and gross motor function to sensorimotor functions of the brain and neuromuscular and cardiometabolic parameters, providing novel information about the adaptation mechanisms in cerebral palsy. To the best of our knowledge, this is the first intervention study providing supervised combined strength, flexibility and gait training for young individuals with CP.

Trial registration number: ISRCTN69044459, prospectively registered (21/04/2017).

Keywords: Cardiometabolic; Cerebral palsy; Flexibility; Gait; Neuromuscular; Strength; Training.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart for EXECP study. CP = cerebral palsy; TD = typically developing; GMFCS = gross motor function classification system; ROM = range of motion; 6MWT = six minutes walking test; MEG = magnetoencephalography

References

    1. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.
    1. Kirby RS, Wingate MS, Van Naarden BK, Doernberg NS, Arneson CL, Benedict RE, et al. Prevalence and functioning of children with cerebral palsy in four areas of the United States in 2006: a report from the autism and developmental disabilities monitoring network. Res Dev Disabil. 2011;32(2):462–469. doi: 10.1016/j.ridd.2010.12.042.
    1. Surveillance of Cerebral Palsy in Europe Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE) Dev Med Child Neurol. 2000;42(12):816–824. doi: 10.1017/S0012162200001511.
    1. Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110(6):1220–1225. doi: 10.1542/peds.110.6.1220.
    1. van DN B-OL, Aertbeliën E, Bonikowski M, Braendvik SM, Broström EW, et al. European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol. 2017;24(7):981–e38. doi: 10.1111/ene.13322.
    1. Geertsen SS, Kirk H, Lorentzen J, Jorsal M, Johansson CB, Nielsen JB. Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness. Clin Neurophysiol. 2015;126(12):2320–2329. doi: 10.1016/j.clinph.2015.02.005.
    1. Lieber RL, Steinman S, Barash IA, Chambers H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve. 2004;29(5):615–627. doi: 10.1002/mus.20059.
    1. Sinkjaer T, Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117(Pt 2):355–363. doi: 10.1093/brain/117.2.355.
    1. Farmer SE, James M. Contractures in orthopaedic and neurological conditions: a review of causes and treatment. Disabil Rehabil. 2001;23(13):549–558. doi: 10.1080/09638280010029930.
    1. Gage JR, Novacheck TF. An update on the treatment of gait problems in cerebral palsy. J Pediatr Orthop B. 2001;10(4):265–274.
    1. Lieber RL, Friden J. Muscle contracture and passive mechanics in cerebral palsy. J Appl Physiol(1985) 2019;126(5):1492–1501. doi: 10.1152/japplphysiol.00278.2018.
    1. Tedroff K, Granath F, Forssberg H, Haglund-Akerlind Y. Long-term effects of botulinum toxin a in children with cerebral palsy. Dev Med Child Neurol. 2009;51(2):120–127. doi: 10.1111/j.1469-8749.2008.03189.x.
    1. Tedroff K, Lowing K, Jacobson DN, Astrom E. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729. doi: 10.1111/j.1469-8749.2011.03969.x.
    1. Gough M, Shortland AP. Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Dev Med Child Neurol. 2012;54(6):495–499. doi: 10.1111/j.1469-8749.2012.04229.x.
    1. Willerslev-Olsen M, Choe Lund M, Lorentzen J, Barber L, Kofoed-Hansen M, Nielsen JB. Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy. Dev Med Child Neurol. 2018;60(7):672–679. doi: 10.1111/dmcn.13729.
    1. Garcia CC, Alcocer-Gamboa A, Ruiz MP, Caballero IM, Faigenbaum AD, Esteve-Lanao J, et al. Metabolic, cardiorespiratory, and neuromuscular fitness performance in children with cerebral palsy: a comparison with healthy youth. J Exerc Rehabil. 2016;12(2):124–131. doi: 10.12965/jer.1632552.276.
    1. Moreau NG, Falvo MJ, Damiano DL. Rapid force generation is impaired in cerebral palsy and is related to decreased muscle size and functional mobility. Gait Posture. 2012;35(1):154–158. doi: 10.1016/j.gaitpost.2011.08.027.
    1. Wiley ME, Damiano DL. Lower-extremity strength profiles in spastic cerebral palsy. Dev Med Child Neurol. 1998;40(2):100–107. doi: 10.1111/j.1469-8749.1998.tb15369.x.
    1. Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther. 2000;80(9):873–885. doi: 10.1093/ptj/80.9.873.
    1. Hanna SE, Rosenbaum PL, Bartlett DJ, Palisano RJ, Walter SD, Avery L, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295–302. doi: 10.1111/j.1469-8749.2008.03196.x.
    1. Smits DW, Gorter JW, Hanna SE, Dallmeijer AJ, van Eck M, Roebroeck ME, et al. Longitudinal development of gross motor function among Dutch children and young adults with cerebral palsy: an investigation of motor growth curves. Dev Med Child Neurol. 2013;55(4):378–384. doi: 10.1111/dmcn.12083.
    1. Carlon SL, Taylor NF, Dodd KJ, Shields N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: a systematic review. Disabil Rehabil. 2013;35(8):647–655. doi: 10.3109/09638288.2012.715721.
    1. Nieuwenhuijsen C, van der Slot WM, Beelen A, Arendzen JH, Roebroeck ME, Stam HJ, et al. Inactive lifestyle in adults with bilateral spastic cerebral palsy. J Rehabil Med. 2009;41(5):375–381. doi: 10.2340/16501977-0340.
    1. Maltais DB, Wiart L, Fowler E, Verschuren O, Damiano DL. Health-related physical fitness for children with cerebral palsy. J Child Neurol. 2014;29(8):1091–1100. doi: 10.1177/0883073814533152.
    1. Verschuren O, Peterson MD, Balemans AC, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58(8):798–808. doi: 10.1111/dmcn.13053.
    1. Bottos M, Feliciangeli A, Sciuto L, Gericke C, Vianello A. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2001;43(8):516–528. doi: 10.1017/S0012162201000950.
    1. Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I. Locomotion skills in adults with cerebral palsy. Clin Rehabil. 2004;18(3):309–316. doi: 10.1191/0269215504cr735oa.
    1. Gillett JG, Lichtwark GA, Boyd RN, Barber LA. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters. Arch Phys Med Rehabil. 2018;99(5):900–906.e1. doi: 10.1016/j.apmr.2018.01.020.
    1. Ross SA, Engsberg JR. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Dev Med Child Neurol. 2002;44(3):148–157. doi: 10.1017/S0012162201001852.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Faigenbaum AD, Kraemer WJ, Blimkie CJ, Jeffreys I, Micheli LJ, Nitka M, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res. 2009;23(5 Suppl):S60–S79. doi: 10.1519/JSC.0b013e31819df407.
    1. Gillett JG, Lichtwark GA, Boyd RN, Barber LA. Functional anaerobic and strength training in young adults with cerebral palsy. Med Sci Sports Exerc. 2018;50(8):1549–1557. doi: 10.1249/MSS.0000000000001614.
    1. Kirk H, Geertsen SS, Lorentzen J, Krarup KB, Bandholm T, Nielsen JB. Explosive resistance training increases rate of force development in ankle Dorsiflexors and gait function in adults with cerebral palsy. J Strength Cond Res. 2016;30(10):2749–2760. doi: 10.1519/JSC.0000000000001376.
    1. MacPhail HE, Kramer JF. Effect of isokinetic strength-training on functional ability and walking efficiency in adolescents with cerebral palsy. Dev Med Child Neurol. 1995;37(9):763–775. doi: 10.1111/j.1469-8749.1995.tb12060.x.
    1. Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013;27(4):325–334. doi: 10.1177/1545968312469834.
    1. Taylor NF, Dodd KJ, Baker RJ, Willoughby K, Thomason P, Graham HK. Progressive resistance training and mobility-related function in young people with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013;55(9):806–812. doi: 10.1111/dmcn.12190.
    1. Scholtes VA, Becher JG, Comuth A, Dekkers H, Van Dijk L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010;52(6):e107–e113. doi: 10.1111/j.1469-8749.2009.03604.x.
    1. Scholtes VA, Becher JG, Janssen-Potten YJ, Dekkers H, Smallenbroek L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise training on walking ability in children with cerebral palsy: a randomized controlled trial. Res Dev Disabil. 2012;33(1):181–188. doi: 10.1016/j.ridd.2011.08.026.
    1. Novak I, Morgan C, Fahey M, Finch-Edmondson M, Galea C, Hines A, et al. State of the evidence traffic lights 2019: systematic review of interventions for preventing and treating children with cerebral palsy. Current Neurology and Neuroscience Reports. 2020;20(2):3. doi: 10.1007/s11910-020-1022-z.
    1. Park EY, Kim WH. Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. Res Dev Disabil. 2014;35(2):239–249. doi: 10.1016/j.ridd.2013.10.021.
    1. Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–168. doi: 10.2165/00007256-200737020-00004.
    1. Damiano DL, Vaughan CL, Abel MF. Muscle response to heavy resistance exercise in children with spastic cerebral palsy. Dev Med Child Neurol. 1995;37(8):731–739. doi: 10.1111/j.1469-8749.1995.tb15019.x.
    1. Malhotra S, Pandyan AD, Day CR, Jones PW, Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil. 2009;23(7):651–658. doi: 10.1177/0269215508101747.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. doi: 10.1093/ptj/67.2.206.
    1. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth scales as measures of spasticity. Clin Rehabil. 1999;13(5):373–383. doi: 10.1191/026921599677595404.
    1. Mockford M, Caulton JM. Systematic review of progressive strength training in children and adolescents with cerebral palsy who are ambulatory. Pediatr Phys Ther. 2008;20(4):318–333. doi: 10.1097/PEP.0b013e31818b7ccd.
    1. Harvey LA, Katalinic OM, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contracture: an abridged republication of a Cochrane systematic review. J Physiother. 2017;63(2):67–75. doi: 10.1016/j.jphys.2017.02.014.
    1. Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol. 2006;48(10):855–862. doi: 10.1017/S0012162206001836.
    1. Wiart L, Darrah J, Kembhavi G. Stretching with children with cerebral palsy: what do we know and where are we going? Pediatr Phys Ther. 2008;20(2):173–178. doi: 10.1097/PEP.0b013e3181728a8c.
    1. Theis N, Korff T, Kairon H, Mohagheghi AA. Does acute passive stretching increase muscle length in children with cerebral palsy? Clin Biomech (Bristol, Avon) 2013;28(9–10):1061–1067. doi: 10.1016/j.clinbiomech.2013.10.001.
    1. Theis N, Korff T, Mohagheghi AA. Does long-term passive stretching alter muscle-tendon unit mechanics in children with spastic cerebral palsy? Clin Biomech (Bristol, Avon) 2015;30(10):1071–1076. doi: 10.1016/j.clinbiomech.2015.09.004.
    1. Zhao H, Wu YN, Hwang M, Ren Y, Gao F, Gaebler-Spira D, et al. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J Appl Physiol (1985) 2011;111(2):435–442. doi: 10.1152/japplphysiol.01361.2010.
    1. Rodda J, Graham HK. Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Neurol. 2001;8(Suppl 5):98–108. doi: 10.1046/j.1468-1331.2001.00042.x.
    1. Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2018;60(9):866–883. doi: 10.1111/dmcn.13708.
    1. Tae HJ, Hyun KY, Won PJ, Mo KH, Seok NK. Three-Dimensional Kinematic Analysis during Upslope Walking with Different Inclinations by Healthy Adults. J Physical Therap Sci. 2009;21(4):388.
    1. Leroux A, Fung J, Barbeau H. Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects. Exp Brain Res. 1999;126(3):359–368. doi: 10.1007/s002210050743.
    1. Lorentzen J, Kirk H, Fernandez-Lago H, Frisk R, Scharff Nielsen N, Jorsal M, et al. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy. Disabil Rehabil. 2017;39(10):987–993. doi: 10.1080/09638288.2016.1174745.
    1. Willerslev-Olsen M, Lorentzen J, Nielsen JB. Gait training reduces ankle joint stiffness and facilitates heel strike in children with cerebral palsy. NeuroRehabilitation. 2014;35(4):643–655. doi: 10.3233/NRE-141180.
    1. Graham JE, Karmarkar AM, Ottenbacher KJ. Small sample research designs for evidence-based rehabilitation: issues and methods. Arch Phys Med Rehabil. 2012;93(8 Suppl):S111–S116. doi: 10.1016/j.apmr.2011.12.017.
    1. Hawkins NG, Sanson-Fisher RW, Shakeshaft A, D'Este C, Green LW. The multiple baseline design for evaluating population-based research. Am J Prev Med. 2007;33(2):162–168. doi: 10.1016/j.amepre.2007.03.020.
    1. Biglan A, Ary D, Wagenaar AC. The value of interrupted time-series experiments for community intervention research. Prev Sci. 2000;1(1):31–49. doi: 10.1023/A:1010024016308.
    1. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. Maher CA, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31(2):185–188. doi: 10.1097/MRR.0b013e32830150f9.
    1. Verschuren O, Ketelaar M, Keefer D, Wright V, Butler J, Ada L, et al. Identification of a core set of exercise tests for children and adolescents with cerebral palsy: a Delphi survey of researchers and clinicians. Developmental Med Child Neurol. 2011;53(5):449–456. doi: 10.1111/j.1469-8749.2010.03899.x.
    1. Verschuren O, Balemans AC. Update of the core set of exercise tests for children and adolescents with cerebral palsy. Pediatr Phys Ther. 2015;27(2):187–189. doi: 10.1097/PEP.0000000000000137.
    1. Hopkins WG. Estimating sample size for magnitude-based inferences. Sportscience. 2006;10:63–70.
    1. Tanimoto M, Ishii N. Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol (1985) 2006;100(4):1150–1157. doi: 10.1152/japplphysiol.00741.2005.
    1. Lieber RL, Boakes JL. Sarcomere length and joint kinematics during torque production in frog hindlimb. Am J Phys. 1988;254(6 Pt 1):C759–C768. doi: 10.1152/ajpcell.1988.254.6.C759.
    1. de Bruin M, Smeulders MJ, Kreulen M. Why is joint range of motion limited in patients with cerebral palsy? J Hand Surg Eur Vol. 2013;38(1):8–13. doi: 10.1177/1753193412444401.
    1. Graves JE, Pollock ML, Jones AE, Colvin AB, Leggett SH. Specificity of limited range of motion variable resistance training. Med Sci Sports Exerc. 1989;21(1):84–89. doi: 10.1249/00005768-198902000-00015.
    1. Rhea MR, Kenn JG, Peterson MD, Massey D, Simão R, Marin PJ, et al. Joint-Angle Specific Strength Adaptations Influence Improvements in Power in Highly Trained Athletes. Human Movement. 2016;17(1):43–49. doi: 10.1515/humo-2016-0006.
    1. Harvey D. Assessment of the flexibility of elite athletes using the modified Thomas test. Br J Sports Med. 1998;32(1):68–70. doi: 10.1136/bjsm.32.1.68.
    1. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):068102. doi: 10.1103/PhysRevLett.89.068102.
    1. Wu S, Wu C, Lin S, Lee K, Peng C. Analysis of complex time series using refined composite multiscale entropy. Physics Lett A. 2014;378(20):1369–1374. doi: 10.1016/j.physleta.2014.03.034.
    1. Aziz W, Arif M. Multiscale permutation entropy of physiological time series. Pakistan Section Multitopic Conference, Karachi, Pakistan. 2005. p. 1–6. 10.1109/INMIC.2005.334494.
    1. Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng. 2010;7(4):046010–042560. doi: 10.1088/1741-2560/7/4/046010.
    1. Ihlen EAF, Weiss A, Bourke A, Helbostad JL, Hausdorff JM. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J Biomech. 2016;49(9):1420–1428. doi: 10.1016/j.jbiomech.2016.02.055.
    1. Richman JS, Randall Moorman J. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039.
    1. Zhang T, Yang Z, Coote JH. Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat. Exp Physiol. 2007;92(4):659–669. doi: 10.1113/expphysiol.2007.037150.
    1. Davis RB, Õunpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Human Movement Sci. 1991;10(5):575–587. doi: 10.1016/0167-9457(91)90046-Z.
    1. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383–392. doi: 10.1002/jor.1100080310.
    1. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–50. doi: 10.1109/TBME.2007.901024.
    1. Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc. 2001;33(5):783–790. doi: 10.1097/00005768-200105000-00017.
    1. Reid S, Hamer P, Alderson J, Lloyd D. Neuromuscular adaptations to eccentric strength training in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2010;52(4):358–363. doi: 10.1111/j.1469-8749.2009.03409.x.
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Lamy JC, Wargon I, Mazevet D, Ghanim Z, Pradat-Diehl P, Katz R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain. 2009;132(Pt 3):734–748. doi: 10.1093/brain/awn310.
    1. Yang Y, Xiao J, Song W. Post-activation depression of the lower extremities in stroke patients with spasticity and spastic equinovarus deformity. Arq Neuropsiquiatr. 2015;73(6):493–498. doi: 10.1590/0004-282X20150052.
    1. Blanchette AK, Mullick AA, Moin-Darbari K, Levin MF. Tonic stretch reflex threshold as a measure of ankle plantar-flexor spasticity after stroke. Phys Ther. 2016;96(5):687–695. doi: 10.2522/ptj.20140243.
    1. Calota A, Feldman AG, Levin MF. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin Neurophysiol. 2008;119(10):2329–2337. doi: 10.1016/j.clinph.2008.07.215.
    1. Boonstra TW, Breakspear M. Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol. 2012;107(3):796–807. doi: 10.1152/jn.00066.2011.
    1. Ward NJ, Farmer SF, Berthouze L, Halliday DM. Rectification of EMG in low force contractions improves detection of motor unit coherence in the beta-frequency band. J Neurophysiol. 2013;110(8):1744–1750. doi: 10.1152/jn.00296.2013.
    1. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG: an update. J Appl Physiol (1985) 2014;117(11):1215–1230. doi: 10.1152/japplphysiol.00162.2014.
    1. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF. A framework for the analysis of mixed time series/point process data--theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol. 1995;64(2–3):237–278. doi: 10.1016/S0079-6107(96)00009-0.
    1. Gardner WA. A unifying view of coherence in signal processing. Signal Processing 1992. 1992;29(2):113–140.
    1. Amjad AM, Halliday DM, Rosenberg JR, Conway BA. An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor. J Neurosci Methods. 1997;73(1):69–79. doi: 10.1016/S0165-0270(96)02214-5.
    1. Halliday DM, Rosenberg JR. On the application, estimation and interpretation of coherence and pooled coherence. J Neurosci Methods. 2000;100(1–2):173–174. doi: 10.1016/S0165-0270(00)00267-3.
    1. Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: Testing and function with posture and pain. 5. Baltimore: Lippincott Williams & Wilkins; 2005.
    1. Clapis PA, Davis SM, Davis RO. Reliability of inclinometer and goniometric measurements of hip extension flexibility using the modified Thomas test. Physiother Theory Pract. 2008;24(2):135–141. doi: 10.1080/09593980701378256.
    1. Gabbe BJ, Bennell KL, Wajswelner H, Finch CF. Reliability of common lower extremity musculoskeletal screening tests. Physical Therapy in Sport 2004. 2004;5(2):90–97. doi: 10.1016/S1466-853X(04)00022-7.
    1. Bandy WD, Irion JM, Briggler M. The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Phys Ther. 1997;77(10):1090–1096. doi: 10.1093/ptj/77.10.1090.
    1. Gnat R, Kuszewski M, Koczar R, Dziewonska A. Reliability of the passive knee flexion and extension tests in healthy subjects. J Manip Physiol Ther. 2010;33(9):659–665. doi: 10.1016/j.jmpt.2010.09.001.
    1. Baumbach SF, Brumann M, Binder J, Mutschler W, Regauer M, Polzer H. The influence of knee position on ankle dorsiflexion - a biometric study. BMC Musculoskeletal Disord. 2014;15:246. doi: 10.1186/1471-2474-15-246.
    1. Moseley AM, Crosbie J, Adams R. Normative data for passive ankle plantarflexion--dorsiflexion flexibility. Clin Biomech (Bristol, Avon) 2001;16(6):514–521. doi: 10.1016/S0268-0033(01)00030-4.
    1. Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE. Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc. 1990;22(6):863–870. doi: 10.1249/00005768-199012000-00021.
    1. Mitchell LE, Ziviani J, Boyd RN. Variability in measuring physical activity in children with cerebral palsy. Med Sci Sports Exerc. 2015;47(1):194–200. doi: 10.1249/MSS.0000000000000374.
    1. Brond JC, Andersen LB, Arvidsson D. Generating ActiGraph counts from raw acceleration recorded by an alternative monitor. Med Sci Sports Exerc. 2017;49(11):2351–2360. doi: 10.1249/MSS.0000000000001344.
    1. Trost SG, Fragala-Pinkham M, Lennon N, O'Neil ME. Decision trees for detection of activity intensity in youth with cerebral palsy. Med Sci Sports Exerc. 2016;48(5):958–966. doi: 10.1249/MSS.0000000000000842.
    1. Finni T, Hu M, Kettunen P, Vilavuo T, Cheng S. Measurement of EMG activity with textile electrodes embedded into clothing. Physiol Meas. 2007;28(11):1405–1419. doi: 10.1088/0967-3334/28/11/007.
    1. Pesola AJ, Laukkanen A, Tikkanen O, Sipila S, Kainulainen H, Finni T. Muscle inactivity is adversely associated with biomarkers in physically active adults. Med Sci Sports Exerc. 2015;47(6):1188–1196. doi: 10.1249/MSS.0000000000000527.
    1. Gao Y, Melin M, Makarainen K, Rantalainen T, Pesola AJ, Laukkanen A, et al. Children's physical activity and sedentary time compared using assessments of accelerometry counts and muscle activity level. PeerJ. 2018;6:e5437. doi: 10.7717/peerj.5437.
    1. Russell DJ, Rosenbaum PL, Wright M, Avery LM. Gross motor function measure (GMFM-66 and GMFM-88) User’s manual. 2. London: Mac Keith Press; 2013.
    1. Moore SA, McKay HA, Macdonald H, Nettlefold L, Baxter-Jones AD, Cameron N, et al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):1755–1764. doi: 10.1249/MSS.0000000000000588.
    1. Tompuri TT, Lakka TA, Hakulinen M, Lindi V, Laaksonen DE, Kilpelainen TO, et al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the physical activity and nutrition in children study. Clin Physiol Funct Imaging. 2015;35(1):21–33. doi: 10.1111/cpf.12118.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Haapala EA, Veijalainen A, Kujala UM, Finni T. Reproducibility of pulse wave velocity and augmentation index derived from non-invasive occlusive oscillometric tonometry analysis in adolescents. Clin Physiol Funct Imaging. 2019;39(1):22–28. doi: 10.1111/cpf.12528.
    1. Piitulainen H, Seipäjärvi S, Avela J, Parviainen T, Walker S. Cortical Proprioceptive Processing Is Altered by Aging. Front Aging Neurosci. 2018;10:147. doi: 10.3389/fnagi.2018.00147.
    1. Piitulainen H, Bourguignon M, Hari R, Jousmaki V. MEG-compatible pneumatic stimulator to elicit passive finger and toe movements. Neuroimage. 2015;112:310–317. doi: 10.1016/j.neuroimage.2015.03.006.
    1. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759–1768. doi: 10.1088/0031-9155/51/7/008.
    1. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG and EEG data analysis with MNE-python. Front Neurosci. 2013;7:267. doi: 10.3389/fnins.2013.00267.
    1. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MNE software for processing MEG and EEG data. Neuroimage. 2014;86:446–460. doi: 10.1016/j.neuroimage.2013.10.027.

Source: PubMed

3
Tilaa