Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile

Manuel Tsiang, Gregg S Jones, Joshua Goldsmith, Andrew Mulato, Derek Hansen, Elaine Kan, Luong Tsai, Rujuta A Bam, George Stepan, Kirsten M Stray, Anita Niedziela-Majka, Stephen R Yant, Helen Yu, George Kukolj, Tomas Cihlar, Scott E Lazerwith, Kirsten L White, Haolun Jin, Manuel Tsiang, Gregg S Jones, Joshua Goldsmith, Andrew Mulato, Derek Hansen, Elaine Kan, Luong Tsai, Rujuta A Bam, George Stepan, Kirsten M Stray, Anita Niedziela-Majka, Stephen R Yant, Helen Yu, George Kukolj, Tomas Cihlar, Scott E Lazerwith, Kirsten L White, Haolun Jin

Abstract

Bictegravir (BIC; GS-9883), a novel, potent, once-daily, unboosted inhibitor of HIV-1 integrase (IN), specifically targets IN strand transfer activity (50% inhibitory concentration [IC50] of 7.5 ± 0.3 nM) and HIV-1 integration in cells. BIC exhibits potent and selective in vitro antiretroviral activity in both T-cell lines and primary human T lymphocytes, with 50% effective concentrations ranging from 1.5 to 2.4 nM and selectivity indices up to 8,700 relative to cytotoxicity. BIC exhibits synergistic in vitro antiviral effects in pairwise combinations with tenofovir alafenamide, emtricitabine, or darunavir and maintains potent antiviral activity against HIV-1 variants resistant to other classes of antiretrovirals. BIC displayed an in vitro resistance profile that was markedly improved compared to the integrase strand transfer inhibitors (INSTIs) raltegravir (RAL) and elvitegravir (EVG), and comparable to that of dolutegravir (DTG), against nine INSTI-resistant site-directed HIV-1 mutants. BIC displayed statistically improved antiviral activity relative to EVG, RAL, and DTG against a panel of 47 patient-derived HIV-1 isolates with high-level INSTI resistance; 13 of 47 tested isolates exhibited >2-fold lower resistance to BIC than DTG. In dose-escalation experiments conducted in vitro, BIC and DTG exhibited higher barriers to resistance than EVG, selecting for HIV-1 variants with reduced phenotypic susceptibility at days 71, 87, and 20, respectively. A recombinant virus with the BIC-selected M50I/R263K dual mutations in IN exhibited only 2.8-fold reduced susceptibility to BIC compared to wild-type virus. All BIC-selected variants exhibited low to intermediate levels of cross-resistance to RAL, DTG, and EVG (<8-fold) but remained susceptible to other classes of antiretrovirals. A high barrier to in vitro resistance emergence for both BIC and DTG was also observed in viral breakthrough studies in the presence of constant clinically relevant drug concentrations. The overall virologic profile of BIC supports its ongoing clinical investigation in combination with other antiretroviral agents for both treatment-naive and -experienced HIV-infected patients.

Copyright © 2016 Tsiang et al.

Figures

FIG 1
FIG 1
Resistance profile of BIC and other INSTIs against 47 HIV-1 patient-derived isolates with INSTI resistance mutations. (A) Bar graph of fold change in resistance. (B) Stratification of the clinical isolates based on fold change in resistance. Primary and other INSTI resistance mutations are listed. Primary INSTI resistance mutations are T66I/A/K, E92Q/G, T97A, Y143C/H/R, S147G, Q148H/K/R, and N155H, and other INSTI resistance mutations are H51Y, L68I/V, V72A/N/T, L74M, Q95K/R, F121C/Y, A128T, E138A/K, G140A/C/S, P145S, Q146I/K/L/P/R, V151L/A, S153A/F/Y, E157K/Q, G163K/R, E170A, and R263K in IN. Susceptibility was determined as the fold change in EC50 versus that of the NL4-3 wild-type vector by Monogram Biosciences, Inc. The biological or lower clinical cutoffs for reduced susceptibility in this assay are 4.0 for DTG, 1.5 for RAL, and 2.5 for EVG. No cutoff has been determined for BIC.
FIG 2
FIG 2
Progress of BIC, DTG, and EVG resistance selection with HIV-1 IIIb. A horizontal line connecting two closed circles represents one passage of the infected cell culture. A vertical line connecting two closed circles represents a transfer of cell-free virus supernatant to fresh uninfected cell culture with either a 1.5-fold or 2-fold increase of the drug concentration. The culture supernatant from the last infected cell culture (black circle) was used for population sequencing, and the mutations identified in the integrase region are indicated. In addition, the viral pool from the last passage of each drug selection was used for clonal sequencing to determine the percentage of clones containing each identified mutation.
FIG 3
FIG 3
HIV-1 IIIb resistance breakthrough in MT-2 cells. Viral resistance breakthrough for each drug was tested in four independent infected cultures in the presence of constant drug pressure for up to 35 days. The number of cultures with replicating virus based on the observed cytopathic effect was scored at each time point. (A) Viral breakthrough control compounds included emtricitabine (FTC), tested at 4× EC95, and elvitegravir (EVG), tested at a Cmin of 5× EC95. (B) Dolutegravir (DTG) and bictegravir (BIC) also were tested at 2.5× and 5× EC95.

References

    1. Hazuda DJ. 2012. HIV integrase as a target for antiretroviral therapy. Curr Opin HIV AIDS 7:383–389. doi:10.1097/COH.0b013e3283567309.
    1. Powderly WG. 2010. Integrase inhibitors in the treatment of HIV-1 infection. J Antimicrob Chemother 65:2485–2488. doi:10.1093/jac/dkq350.
    1. Messiaen P, Wensing AM, Fun A, Nijhuis M, Brusselaers N, Vandekerckhove L. 2013. Clinical use of HIV integrase inhibitors: a systematic review and meta-analysis. PLoS One 8:e52562. doi:10.1371/journal.pone.0052562.
    1. Cooper DA, Steigbigel RT, Gatell J, Rockstroh J, Katlama C, Yeni P, Lazzarin A, Clotet B, Kumar P, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Meibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Teppler H, Nguyen B. 2008. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 359:355–365. doi:10.1056/NEJMoa0708978.
    1. Markowitz M, Nguyen BY, Gotuzzo E, Mendo F, Ratanasuwan W, Kovacs C, Prada G, Morales-Ramirez JO, Crumpacker CS, Isaacs RD, Campbell H, Strohmaier KM, Wan H, Danovich RM, Teppler H. 2009. Sustained antiretroviral effect of raltegravir after 96 weeks of combination therapy in treatment-naive patients with HIV-1 infection. J Acquir Immune Defic Syndr 52:350–356. doi:10.1097/QAI.0b013e3181b064b0.
    1. Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Gatell JM, Rockstroh JK, Katlama C, Yeni P, Lazzarin A, Clotet B, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Neibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Nguyen BY, Teppler H. 2008. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med 359:339–353. doi:10.1056/NEJMoa0708975.
    1. Shimura K, Kodama EN. 2009. Elvitegravir: a new HIV integrase inhibitor. Antivir Chem Chemother 20:79–85. doi:10.3851/IMP1397.
    1. Zolopa AR, Berger DS, Lampiris H, Zhong L, Chuck SL, Enejosa JV, Kearney BP, Cheng AK. 2010. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J Infect Dis 201:814–822. doi:10.1086/650698.
    1. Xu L, Liu H, Hong A, Vivian R, Murray BP, Callebaut C, Choi YC, Lee MS, Chau J, Tsai LK, Stray KM, Strickley RG, Wang J, Tong L, Swaminathan S, Rhodes GR, Desai MC. 2014. Structure-activity relationships of diamine inhibitors of cytochrome P450 (CYP) 3A as novel pharmacoenhancers. Part II. P2/P3 region and discovery of cobicistat (GS-9350). Bioorg Med Chem Lett 24:995–999.
    1. Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP Jr, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD. 2004. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc Natl Acad Sci U S A 101:11233–11238. doi:10.1073/pnas.0402357101.
    1. Garrido C, Villacian J, Zahonero N, Pattery T, Garcia F, Gutierrez F, Caballero E, Van Houtte M, Soriano V, de Mendoza C. 2012. Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob Agents Chemother 56:2873–2878. doi:10.1128/AAC.06170-11.
    1. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, Tchertanov L, Peytavin G, Reynes J, Mouscadet JF, Katlama C, Calvez V, Marcelin AG. 2008. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 52:1351–1358. doi:10.1128/AAC.01228-07.
    1. Mesplede T, Quashie PK, Wainberg MA. 2012. Resistance to HIV integrase inhibitors. Curr Opin HIV AIDS 7:401–408. doi:10.1097/COH.0b013e328356db89.
    1. Geretti AM, Armenia D, Ceccherini-Silberstein F. 2012. Emerging patterns and implications of HIV-1 integrase inhibitor resistance. Curr Opin Infect Dis 25:677–686. doi:10.1097/QCO.0b013e32835a1de7.
    1. Wainberg MA, Mesplede T, Quashie PK. 2012. The development of novel HIV integrase inhibitors and the problem of drug resistance. Curr Opin Virol 2:656–662. doi:10.1016/j.coviro.2012.08.007.
    1. Min S, Song I, Borland J, Chen S, Lou Y, Fujiwara T, Piscitelli SC. 2010. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother 54:254–258. doi:10.1128/AAC.00842-09.
    1. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, Foster SA, Hazen RJ, Miki S, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T. 2011. In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 55:813–821. doi:10.1128/AAC.01209-10.
    1. Lenz JC, Rockstroh JK. 2011. S/GSK1349572, a new integrase inhibitor for the treatment of HIV: promises and challenges. Expert Opin Investig Drugs 20:537–548. doi:10.1517/13543784.2011.562189.
    1. Karmon SL, Markowitz M. 2013. Next-generation integrase inhibitors: where to after raltegravir? Drugs 73:213–228. doi:10.1007/s40265-013-0015-5.
    1. Raffi F, Jaeger H, Quiros-Roldan E, Albrecht H, Belonosova E, Gatell JM, Baril JG, Domingo P, Brennan C, Almond S, Min S. 2013. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis 13:927–935. doi:10.1016/S1473-3099(13)70257-3.
    1. Cahn P, Pozniak AL, Mingrone H, Shuldyakov A, Brites C, Andrade-Villanueva JF, Richmond G, Buendia CB, Fourie J, Ramgopal M, Hagins D, Felizarta F, Madruga J, Reuter T, Newman T, Small CB, Lombaard J, Grinsztejn B, Dorey D, Underwood M, Griffith S, Min S. 2013. Dolutegravir versus raltegravir in antiretroviral-experienced, integrase-inhibitor-naive adults with HIV: week 48 results from the randomised, double-blind, non-inferiority SAILING study. Lancet 382:700–708. doi:10.1016/S0140-6736(13)61221-0.
    1. Clotet B, Feinberg J, van Lunzen J, Khuong-Josses MA, Antinori A, Dumitru I, Pokrovskiy V, Fehr J, Ortiz R, Saag M, Harris J, Brennan C, Fujiwara T, Min S. 2014. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet 383:2222–2231. doi:10.1016/S0140-6736(14)60084-2.
    1. Walmsley SL, Antela A, Clumeck N, Duiculescu D, Eberhard A, Gutierrez F, Hocqueloux L, Maggiolo F, Sandkovsky U, Granier C, Pappa K, Wynne B, Min S, Nichols G. 2013. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. N Engl J Med 369:1807–1818. doi:10.1056/NEJMoa1215541.
    1. Eron JJ, Clotet B, Durant J, Katlama C, Kumar P, Lazzarin A, Poizot-Martin I, Richmond G, Soriano V, Ait-Khaled M, Fujiwara T, Huang J, Min S, Vavro C, Yeo J. 2013. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING study. J Infect Dis 207:740–748. doi:10.1093/infdis/jis750.
    1. Lepik KJ, Yip B, Robbins M, Woods C, Lima VD, McGovern RA, Zhang WW, Barrios R, Montaner JSG, Harrigan PR. 2016. Prevalence and incidence of integrase drug resistance in BC, Canada 2009-2015 Abstr 23rd Conf Retroviruses Opportunistic Infect, abstr 492LB.
    1. Castagna A, Maggiolo F, Penco G, Wright D, Mills A, Grossberg R, Molina JM, Chas J, Durant J, Moreno S, Doroana M, Ait-Khaled M, Huang J, Min S, Song I, Vavro C, Nichols G, Yeo JM. 2014. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J Infect Dis 210:354–362. doi:10.1093/infdis/jiu051.
    1. Koteff J, Borland J, Chen S, Song I, Peppercorn A, Koshiba T, Cannon C, Muster H, Piscitelli SC. 2013. A phase 1 study to evaluate the effect of dolutegravir on renal function via measurement of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol 75:990–996. doi:10.1111/j.1365-2125.2012.04440.x.
    1. ViiV Healthcare. 2015. Tivicay 50 mg film-coated tablets. ViiV Healthcare, Middlesex, United Kingdom.
    1. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. 1999. A packaging cell line for lentivirus vectors. J Virol 73:576–584.
    1. Butler SL, Hansen MS, Bushman FD. 2001. A quantitative assay for HIV DNA integration in vivo. Nat Med 7:631–634. doi:10.1038/87979.
    1. Cihlar T, Ray AS, Boojamra CG, Zhang L, Hui H, Laflamme G, Vela JE, Grant D, Chen J, Myrick F, White KL, Gao Y, Lin KY, Douglas JL, Parkin NT, Carey A, Pakdaman R, Mackman RL. 2008. Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131 Antimicrob Agents Chemother 52:655–665.
    1. Cihlar T, He GX, Liu X, Chen JM, Hatada M, Swaminathan S, McDermott MJ, Yang ZY, Mulato AS, Chen X, Leavitt SA, Stray KM, Lee WA. 2006. Suppression of HIV-1 protease inhibitor resistance by phosphonate-mediated solvent anchoring. J Mol Biol 363:635–647. doi:10.1016/j.jmb.2006.07.073.
    1. Jones GS, Yu F, Zeynalzadegan A, Hesselgesser J, Chen X, Chen J, Jin H, Kim CU, Wright M, Geleziunas R, Tsiang M. 2009. Preclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 53:1194–1203. doi:10.1128/AAC.00984-08.
    1. Wang Y, Klock H, Yin H, Wolff K, Bieza K, Niswonger K, Matzen J, Gunderson D, Hale J, Lesley S, Kuhen K, Caldwell J, Brinker A. 2005. Homogeneous high-throughput screening assays for HIV-1 integrase 3beta-processing and strand transfer activities. J Biomol Screen 10:456–462. doi:10.1177/1087057105275212.
    1. Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R. 2012. New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 287:21189–21203. doi:10.1074/jbc.M112.347534.
    1. Lazerwith SE, Cai R, Chen X, Desai MC, Eng S, Jacques R, Ji M, Martin H, McMahon C, Mish M, Morganelli P, Mwangi J, Pyun HJ, Schmitz U, Stepan G, Szwarcberg J, Tang J, Tsiang M, Wang J, White K, Wiser L, Zack J, Jin H. 2016. Discovery of bictegravir (GS-9883), a novel, unboosted, once-daily HIV-1 integrase strand transfer inhibitor (INSTI) with improved pharmacokinetics and in vitro resistance profile. ASM Microbe 2016, poster 414.
    1. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M. 2008. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 82:764–774. doi:10.1128/JVI.01534-07.
    1. Prichard MN, Shipman C Jr. 1990. A three-dimensional model to analyze drug-drug interactions. Antiviral Res 14:181–205. doi:10.1016/0166-3542(90)90001-N.
    1. Prichard MN, Prichard LE, Shipman C Jr. 1993. Strategic design and three-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37:540–545. doi:10.1128/AAC.37.3.540.
    1. Quashie PK, Mesplede T, Wainberg MA. 2013. Evolution of HIV integrase resistance mutations. Curr Opin Infect Dis 26:43–49.
    1. Quashie PK, Mesplede T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. 2012. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 86:2696–2705. doi:10.1128/JVI.06591-11.
    1. Pozniak A, Mingrone H, Shuldyakov A, Brites C, Andrade-Villanueva JF, Hagins D, Buendia CB, Dorey D, Griffith S, Min S. Dolutegravir (DTG) versus raltegravir (RAL) in ART-experienced, integrase-naive subjects: 24 week interim results from SAILING (ING111762). Abstr 20th Conf Retroviruses Opportunistic Infect, abstr 179LB.
    1. Lataillade M, Chiarella J, Kozal MJ. 2007. Natural polymorphism of the HIV-1 integrase gene and mutations associated with integrase inhibitor resistance. Antivir Ther 12:563–570.
    1. Jones G, Ledford RM, Yu F, Chen X, Miller MD, Tsiang M, McColl DJ. In vitro resistance profile of HIV-1 mutants selected by the HIV-1 integrase inhibitor, GS-9137 (JTK-303) Abstr 14th Conf Retroviruses Opportunistic Infect, abstr 627.
    1. Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M, McColl DJ, White KL, Miller MD. 2012. In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antiviral Res 93:288–296. doi:10.1016/j.antiviral.2011.12.008.
    1. Wares M, Mesplede T, Quashie PK, Osman N, Han Y, Wainberg MA. 2014. The M50I polymorphic substitution in association with the R263K mutation in HIV-1 subtype B integrase increases drug resistance but does not restore viral replicative fitness. Retrovirology 11:7. doi:10.1186/1742-4690-11-7.
    1. Hachiya A, Ode H, Matsuda M, Kito Y, Shigemi U, Matsuoka K, Imamura J, Yokomaku Y, Iwatani Y, Sugiura W. 2015. Natural polymorphism S119R of HIV-1 integrase enhances primary INSTI resistance. Antiviral Res 119:84–88. doi:10.1016/j.antiviral.2015.04.014.
    1. McColl DJ, Chen X. 2010. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 85:101–118. doi:10.1016/j.antiviral.2009.11.004.
    1. Abram M, Margot N, Barnes T, Ram R, Chen X, White K, Miller M, Callebaut C. 2014. Clinical impact and characterization of HIV integrase inhibitor resistance associated with T97A: a low-level polymorphic integrase mutation, abstr POH-017 Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DC.
    1. Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–329. doi:10.1038/nature09517.
    1. Serrao E, Krishnan L, Shun MC, Li X, Cherepanov P, Engelman A, Maertens GN. 2014. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5164–5176. doi:10.1093/nar/gku136.
    1. White KL, Kulkarni R, McColl DJ, Rhee MS, Szwarcberg J, Cheng AK, Miller MD. 2015. Week 144 resistance analysis of elvitegravir/cobicistat/emtricitabine/tenofovir DF versus efavirenz/emtricitabine/tenofovir DF in antiretroviral-naive patients. Antivir Ther 20:317–327.
    1. Kulkarni R, Abram ME, McColl DJ, Barnes T, Fordyce MW, Szwarcberg J, Cheng AK, Miller MD, White KL. 2014. Week 144 resistance analysis of elvitegravir/cobicistat/emtricitabine/tenofovir DF versus atazanavir+ritonavir+emtricitabine/tenofovir DF in antiretroviral-naive patients. HIV Clin Trials 15:218–230. doi:10.1310/hct1504-218.
    1. Hurt CB, Sebastian J, Hicks CB, Eron JJ. 2014. Resistance to HIV integrase strand transfer inhibitors among clinical specimens in the United States, 2009-2012. Clin Infect Dis 58:423–431. doi:10.1093/cid/cit697.
    1. Huang W, Frantzell A, Fransen S, Petropoulos CJ. 2013. Multiple genetic pathways involving amino acid position 143 of HIV-1 integrase are preferentially associated with specific secondary amino acid substitutions and confer resistance to raltegravir and cross-resistance to elvitegravir. Antimicrob Agents Chemother 57:4105–4113. doi:10.1128/AAC.00204-13.
    1. Mesplede T, Quashie PK, Osman N, Han Y, Singhroy DN, Lie Y, Petropoulos CJ, Huang W, Wainberg MA. 2013. Viral fitness cost prevents HIV-1 from evading dolutegravir drug pressure. Retrovirology 10:22. doi:10.1186/1742-4690-10-22.

Source: PubMed

3
Tilaa