LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue

May Faraj, May Faraj

Abstract

Type 2 diabetes (T2D) and cardiovascular disease (CVD) share many risk factors such as obesity, unhealthy lifestyle, and metabolic syndrome, whose accumulation over years leads to disease onset. However, while lowering plasma low-density lipoprotein cholesterol (LDLC) is cardio-protective, novel evidence have recognised a role for common LDLC-lowering variants ( e.g. in HMGCR, PCSK9, and LDLR) and widely used hypocholesterolemic drugs that mimic the effects of some of these variants (statins) in higher risk for T2D. As these conditions decrease plasma LDLC by increasing tissue-uptake of LDL, a role for LDL receptor (LDLR) pathway was proposed. While underlying mechanisms remain to be fully elucidated, work from our lab reported that native LDL directly provoke the dysfunction of human white adipose tissue (WAT) and the activation of WAT NLRP3 (Nucleotide-binding domain and Leucine-rich repeat Receptor, containing a Pyrin domain 3) inflammasome, which play a major role in the etiology of T2D. However, while elevated plasma numbers of apolipoprotein B (apoB)-containing lipoproteins (measured as apoB, mostly as LDL) is associated with WAT dysfunction and related risk factors for T2D in our cohort, this relation was strengthened in regression analysis by lower plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). This supports a central role for upregulated pathway of LDLR and/or other receptors regulated by PCSK9 such as cluster of differentiation 36 (CD36) in LDL-induced anomalies. Targeting receptor-mediated uptake of LDL into WAT may reduce WAT inflammation, WAT dysfunction, and related risk for T2D without increasing the risk for CVD.

Keywords: CD36; LDLR; apoB-lipoproteins; apoB-to-PCSK9 ratio; cardiometabolic risk; insulin sensitivity.

Figures

1. Higher plasma LDL promotes subcutaneous WAT…
1. Higher plasma LDL promotes subcutaneous WAT dysfunction and related risk factors for T2D.
2. Proposed central role of LDL, PCSK9,…
2. Proposed central role of LDL, PCSK9, LDLR and CD36 in modulating the risk for CVD vs. T2D.

References

    1. Diabetes Canada. Diabetes statistics in Canada[EB/OL]. http://www.diabetes.ca/how-you-can-help/advocate/why-federal-leadership-is-essential/diabetes-statistics-in-canada#_ftn1.

    1. Prentki M, Nolan CJ Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–1812. doi: 10.1172/JCI29103.
    1. Lorenzo C, Wagenknecht LE, Rewers MJ, et al Disposition index, glucose effectiveness, and conversion to type 2 diabetes: the Insulin Resistance Atherosclerosis Study (IRAS) Diabetes Care. 2010;33(9):2098–2103. doi: 10.2337/dc10-0165.
    1. Idris I, Thomson GA, Sharma JC Diabetes mellitus and stroke. Int J Clin Pract. 2006;60(1):48–56.
    1. Booth GL, Kapral MK, Fung K, et al Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36. doi: 10.1016/S0140-6736(06)68967-8.
    1. Lee WL, Cheung AM, Cape D, et al Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care. 2000;23(7):962–968. doi: 10.2337/diacare.23.7.962.
    1. Knowler WC, Barrett-Connor E, Fowler SE, et al Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Bissonnette S, Salem H, Wassef H, et al Low density lipoprotein delays clearance of triglyceride-rich lipoprotein by human subcutaneous adipose tissue. J Lipid Res. 2013;54(5):1466–1476. doi: 10.1194/jlr.P023176.
    1. Sniderman AD, St-Pierre AC, Cantin B, et al Concordance/discordance between plasma apolipoprotein B levels and the cholesterol indexes of atherosclerotic risk. Am J Cardiol. 2003;91(10):1173–1177. doi: 10.1016/s0002-9149(03)00262-5.
    1. Ramasamy I Update on the laboratory investigation of dyslipidemias. Clin Chim Acta. 2018;479:103–125. doi: 10.1016/j.cca.2018.01.015.
    1. Williams KJ, Tabas I Lipoprotein retention—and clues for atheroma regression. Arterioscler Thromb Vasc Biol. 2005;25(8):1536–1540. doi: 10.1161/01.ATV.0000174795.62387.d3.
    1. Ridker PM, Rifai N, Rose L, et al Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347(20):1557–1565. doi: 10.1056/NEJMoa021993.
    1. Schlitt A, Blankenberg S, Bickel C, et al Prognostic value of lipoproteins and their relation to inflammatory markers among patients with coronary artery disease. Int J Cardiol. 2005;102(3):477–485. doi: 10.1016/j.ijcard.2004.05.056.
    1. Albert MA, Glynn RJ, Ridker PM Plasma concentration of C-reactive protein and the calculated framingham coronary heart disease risk score. Circulation. 2003;108(2):161–165. doi: 10.1161/.
    1. Faraj M, Messier L, Bastard JP, et al Apolipoprotein B: a predictor of inflammatory status in postmenopausal overweight and obese women. Diabetologia. 2006;49(7):1637–1646. doi: 10.1007/s00125-006-0259-7.
    1. Onat A, Can G, Hergenç G, et al Serum apolipoprotein B predicts dyslipidemia, metabolic syndrome and, in women, hypertension and diabetes, independent of markers of central obesity and inflammation. Int J Obes (Lond) 2007;31(7):1119–1125. doi: 10.1038/sj.ijo.0803552.
    1. Ley SH, Harris SB, Connelly PW, et al Association of apolipoprotein B with incident type 2 diabetes in an aboriginal Canadian population. Clin Chem. 2010;56(4):666–670. doi: 10.1373/clinchem.2009.136994.
    1. Salomaa V, Havulinna A, Saarela O, et al Thirty-one novel biomarkers as predictors for clinically incident diabetes. PLoS One. 2010;5(4):e10100. doi: 10.1371/journal.pone.0010100.
    1. Hwang YC, Ahn HY, Park SW, et al Apolipoprotein B and non-HDL cholesterol are more powerful predictors for incident type 2 diabetes than fasting glucose or glycated hemoglobin in subjects with normal glucose tolerance: a 3.3-year retrospective longitudinal study. Acta Diabetol. 2014;51(6):941–946. doi: 10.1007/s00592-014-0587-x.
    1. Besseling J, Kastelein JJP, Defesche JC, et al Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313(10):1029–1036. doi: 10.1001/jama.2015.1206.
    1. Sattar N, Preiss D, Murray HM, et al Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–742. doi: 10.1016/S0140-6736(09)61965-6.
    1. Ridker PM, Pradhan A, MacFadyen JG, et al Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012;380(9841):565–571. doi: 10.1016/S0140-6736(12)61190-8.
    1. Corrao G, Ibrahim B, Nicotra F, et al Statins and the risk of diabetes: evidence from a large population-based cohort study. Diabetes Care. 2014;37(8):2225–2232. doi: 10.2337/dc13-2215.
    1. Swerdlow DI, Preiss D, Kuchenbaecker KB, et al HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–361. doi: 10.1016/S0140-6736(14)61183-1.
    1. Kato S, Miura M Risk of new‐onset diabetes mellitus during treatment with low‐dose statins in Japan: A retrospective cohort study. J Clin Pharm Ther. 2018;43(4):536–542. doi: 10.1111/jcpt.12675.
    1. Thakker D, Nair S, Pagada A, et al Statin use and the risk of developing diabetes: a network meta-analysis. Pharmacoepidemiol Drug Saf. 2016;25(10):1131–1149. doi: 10.1002/pds.4020.
    1. FDA Drug Safety Communication: important safety label changes to cholesterol-lowering statin drugs[EB/OL]. (2016-01-19). http://www.fda.gov/Drugs/DrugSafety/ucm293101.htm.

    1. Preiss D, Sattar N Does the LDL receptor play a role in the risk of developing type 2 diabetes? JAMA. 2015;313(10):1016–1017. doi: 10.1001/jama.2015.1275.
    1. Schmidt AF, Swerdlow DI, Holmes MV, et al PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study . Lancet Diabetes Endocrinol. 2017;5(2):97–105. doi: 10.1016/S2213-8587(16)30396-5.
    1. Ference BA, Robinson JG, Brook RD, et al Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes . N Engl J Med. 2016;375(22):2144–2153. doi: 10.1056/NEJMoa1604304.
    1. Lotta LA, Sharp SJ, Burgess S, et al Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes. JAMA. 2016;316(13):1383–1391. doi: 10.1001/jama.2016.14568.
    1. Seidah NG, Benjannet S, Wickham L, et al The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100(3):928–933. doi: 10.1073/pnas.0335507100.
    1. Zaid A, Roubtsova A, Essalmani R, et al Proprotein convertase subtilisin/kexin type 9 (PCSK9): Hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology. 2008;48(2):646–654. doi: 10.1002/hep.22354.
    1. Zhang DW, Lagace TA, Garuti R, et al Binding of proprotein convertase Subtilisin/Kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem. 2007;282(25):18602–18612. doi: 10.1074/jbc.M702027200.
    1. Roubtsova A, Munkonda MN, Awan Z, et al Circulating proprotein convertase Subtilisin/Kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol. 2011;31(4):785–791. doi: 10.1161/ATVBAHA.110.220988.
    1. Demers A, Samami S, Lauzier B, et al PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 2015;35(12):2517–2525. doi: 10.1161/ATVBAHA.115.306032.
    1. Glatz JFC, Luiken JJFP Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. J Lipid Res. 2018;59(7):1084–1093. doi: 10.1194/jlr.R082933.
    1. Calvo D, Gómez-Coronado D, Suárez Y, et al Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res. 1998;39(4):777–788.
    1. De Carvalho LSF, Campos AM, Sposito AC Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes: a systematic review and meta-analysis with over 96,000 patient-years. Diabetes Care. 2018;41(2):364–367. doi: 10.2337/dc17-1464.
    1. Sabatine MS, Leiter LA, Wiviott SD, et al Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5(12):941–950. doi: 10.1016/S2213-8587(17)30313-3.
    1. Ray KK, Colhoun HM, Szarek M, et al Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(8):618–628. doi: 10.1016/S2213-8587(19)30158-5.
    1. Mascitelli L, Goldstein MR Questioning the safety and benefits of evolocumab. Lancet Diabetes Endocrinol. 2018;6(1):11.
    1. Faraj M, Lu HL, Cianflone K Diabetes, lipids, and adipocyte secretagogues. Biochem Cell Biol. 2004;82(1):170–190. doi: 10.1139/o03-078.
    1. Gastaldelli A, Gaggini M, DeFronzo RA Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio metabolism study. Diabetes. 2017;66(4):815–822. doi: 10.2337/db16-1167.
    1. Kim JY, Nasr A, Tfayli H, et al Increased lipolysis, diminished adipose tissue insulin sensitivity, and impaired β-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance. Diabetes. 2017;66(12):3085–3090. doi: 10.2337/db17-0551.
    1. Ginsberg HN, Zhang YL, Hernandez-Ono A Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36(3):232–340. doi: 10.1016/j.arcmed.2005.01.005.
    1. Faraj M Au-delà du risque cardiovasculaire: le rôle des lipoprotéines contenant l’apoB athérogènes dans l’étiologie du diabète de type 2. Méd Mal Métabol (in French) 2019;13(2):129–139.
    1. Cyr Y, Bissonnette S, Lamantia V, et al ApoB-lipoproteins and PCSK9 as modulators of human white adipose tissue function and NLRP3 inflammasome activity. Atheroscler Suppl. 2018;32:117.
    1. Lamantia V, Bissonnette S, Wassef H, et al ApoB-lipoproteins and dysfunctional white adipose tissue: relation to risk factors for type 2 diabetes in humans. J Clin Lipidol. 2017;11(1):34–45.e2. doi: 10.1016/j.jacl.2016.09.013.
    1. Masella R, Varì R, D'Archivio M, et al Oxidised LDL modulate adipogenesis in 3T3-L1 preadipocytes by affecting the balance between cell proliferation and differentiation. FEBS Lett. 2006;580(10):2421–2429. doi: 10.1016/j.febslet.2006.03.068.
    1. Kuniyasu A, Hayashi S, Nakayama H Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. Biochem Biophys Res Commun. 2002;295(2):319–323. doi: 10.1016/S0006-291X(02)00666-6.
    1. Bissonnette S, Saint-Pierre N, Lamantia V, et al Plasma IL-1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans. Nutr Diabetes. 2015;5(9):e180. doi: 10.1038/nutd.2015.30.
    1. Wassef H, Bissonnette S, Saint-Pierre N, et al The apoB-to-PCSK9 ratio: a new index for metabolic risk in humans. J Clin Lipidol. 2015;9(5):664–675. doi: 10.1016/j.jacl.2015.06.012.
    1. Bissonnette S, Saint-Pierre N, Lamantia V, et al High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet. Am J Clin Nutr. 2018;108(1):62–76. doi: 10.1093/ajcn/nqy070.
    1. Herder C, Brunner EJ, Rathmann W, et al Elevated levels of the anti-inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes. Diabetes Care. 2009;32(3):421–423. doi: 10.2337/dc08-1161.
    1. Boon J, Hoy AJ, Stark R, et al Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes. 2013;62(2):401–410. doi: 10.2337/db12-0686.
    1. Pedrini MT, Kranebitter M, Niederwanger A, et al Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia. 2005;48(4):756–766. doi: 10.1007/s00125-005-1684-8.
    1. Roehrich ME, Mooser V, Lenain V, et al Insulin-secreting β-cell dysfunction induced by human lipoproteins. J Biol Chem. 2003;278(20):18368–18375. doi: 10.1074/jbc.M300102200.
    1. Rütti S, Ehses JA, Sibler RA, et al Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic β-cells. Endocrinology. 2009;150(10):4521–4530. doi: 10.1210/en.2009-0252.
    1. Mbikay M, Sirois F, Mayne J, et al PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 2010;584(4):701–706. doi: 10.1016/j.febslet.2009.12.018.
    1. Da Dalt L, Ruscica M, Bonacina F, et al PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: the role of the low-density lipoprotein receptor. Eur Heart J. 2019;40(4):357–368. doi: 10.1093/eurheartj/ehy357.
    1. Skeldon AM, Faraj M, Saleh M Caspases and inflammasomes in metabolic inflammation. Immunol Cell Biol. 2014;92(4):304–313. doi: 10.1038/icb.2014.5.
    1. Masters SL, Latz E, O'Neill LAJ The inflammasome in atherosclerosis and type 2 diabetes. Sci Transl Med. 2011;3(81):81ps17.
    1. Camell C, Goldberg E, Dixit VD Regulation of Nlrp3 inflammasome by dietary metabolites. Semin Immunol. 2015;27(5):334–342. doi: 10.1016/j.smim.2015.10.004.
    1. Rampanelli E, Orsó E, Ochodnicky P, et al Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Sci Rep. 2017;7(1):2861. doi: 10.1038/s41598-017-01994-9.
    1. Stewart CR, Stuart LM, Wilkinson K, et al CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11(2):155–161. doi: 10.1038/ni.1836.
    1. Lee JY, Zhao L, Hwang DH Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr Rev. 2010;68(1):38–61. doi: 10.1111/j.1753-4887.2009.00259.x.
    1. Saleh M The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol Rev. 2011;243(1):235–246. doi: 10.1111/j.1600-065X.2011.01045.x.
    1. Zhou RB, Tardivel A, Thorens B, et al Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–140. doi: 10.1038/ni.1831.
    1. Wen HT, Gris D, Lei Y, et al Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–415. doi: 10.1038/ni.2022.
    1. Sheedy FJ, Grebe A, Rayner KJ, et al CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14(8):812–820. doi: 10.1038/ni.2639.
    1. Vandanmagsar B, Youm YH, Ravussin A, et al The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–188. doi: 10.1038/nm.2279.
    1. Larsen CM, Faulenbach M, Vaag A, et al Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–1526. doi: 10.1056/NEJMoa065213.
    1. Sloan-Lancaster J, Abu-Raddad E, Polzer J, et al Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care. 2013;36(8):2239–2246. doi: 10.2337/dc12-1835.
    1. Ridker PM, Everett BM, Thuren T, et al Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–1131. doi: 10.1056/NEJMoa1707914.
    1. Everett BM, Donath MY, Pradhan AD, et al Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J Am Coll Cardiol. 2018;71(21):2392–2401. doi: 10.1016/j.jacc.2018.03.002.
    1. Moore KJ, Sheedy FJ, Fisher EA Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–721. doi: 10.1038/nri3520.
    1. Tall AR, Yvan-Charvet L Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–116. doi: 10.1038/nri3793.
    1. Bissonnette S, Lamantia V, Cyr Y, et al Native LDL are priming signals of white adipose tissue NLRP3 inflammasome in overweight and obese subjects. Atheroscler Suppl. 2018;32:123.
    1. Gagnon A, Ooi TC, Cousins M, et al The anti-adipogenic effect of peripheral blood mononuclear cells is absent with PCSK9 loss-of-function variants. Obesity. 2016;24(11):2384–2391. doi: 10.1002/oby.21656.
    1. Grune J, Meyborg H, Bezhaeva T, et al PCSK9 regulates the chemokine receptor CCR2 on monocytes. Biochem Biophys Res Commun. 2017;485(2):312–318. doi: 10.1016/j.bbrc.2017.02.085.
    1. Cyr Y, Bissonnette S, Lamantia V, et al Higher adipose tissue surface-expression of LDLR and CD36 and risk factors for T2D in normocholesterolemic subjects with low plasma PCSK9. Atheroscler Suppl. 2018;32:70–71.
    1. Lamantia V, Sniderman A, Faraj M Nutritional management of hyperapoB. Nutr Res Rev. 2016;29(2):202–233. doi: 10.1017/S0954422416000147.
    1. Steffen BT, Steffen LM, Zhou X, et al n-3 fatty acids attenuate the risk of diabetes associated with elevated serum nonesterified fatty acids: the multi-ethnic study of atherosclerosis. Diabetes Care. 2015;38(4):575–580.

Source: PubMed

3
Tilaa