Effects of Cinnamon Consumption on Glycemic Indicators, Advanced Glycation End Products, and Antioxidant Status in Type 2 Diabetic Patients

Behrouz Talaei, Atieh Amouzegar, Shamim Sahranavard, Mehdi Hedayati, Parvin Mirmiran, Fereidoun Azizi, Behrouz Talaei, Atieh Amouzegar, Shamim Sahranavard, Mehdi Hedayati, Parvin Mirmiran, Fereidoun Azizi

Abstract

The aim of the current study was to determine the effect of a daily intake of three grams of cinnamon over eight weeks on glycemic indicators, advanced glycation end products, and antioxidant status in patients with type 2 diabetes. In a double-blind, randomized, placebo controlled clinical trial study, 44 patients with type 2 diabetes, aged 57 ± 8 years, were randomly assigned to take either a three g/day cinnamon supplement (n = 22) or a placebo (n = 22) for eight weeks. We measured the fasting blood glucose, insulin, hemoglobinbA1c, homeostasis model assessment for insulin resistance (HOMA-IR), carboxymethyl lysine, total antioxidant capacity, and malondialdehyde levels at the beginning and the end of the study. Thirty-nine patients (20 in the intervention group and 19 in the control group) completed the study. After an eight-week intervention, changes in the level of fasting blood glucose, insulin, hemoglobinbA1c, HOMA-IR, carboxymethyl lysine, total antioxidant capacity, and malondialdehyde were not significant in either group, nor were any significant differences between groups observed in these glycemic and inflammatory indicators at the end of the intervention. Our study revealed that cinnamon supplementation had no significant effects on glycemic and inflammatory indicators in patients with type 2 diabetes.

Keywords: cinnamon; glycemic indices; inflammatory indicators; type 2 diabetes.

Conflict of interest statement

The authors declare that there is no conflict of interest.

Figures

Figure 1
Figure 1
Summary of patient flow chart.

References

    1. Guariguata L., Whiting D.R., Hambleton I., Beagley J., Linnenkamp U., Shaw J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014;103:137–149. doi: 10.1016/j.diabres.2013.11.002.
    1. Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010;87:4–14. doi: 10.1016/j.diabres.2009.10.007.
    1. Hossain P., Kawar B., El Nahas M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007;356:213–215. doi: 10.1056/NEJMp068177.
    1. Esteghamati A., Gouya M.M., Abbasi M., Delavari A., Alikhani S., Alaedini F., Safaie A., Forouzanfar M., Gregg E.W. Prevalence of diabetes and impaired fasting glucose in the adult population of Iran: National survey of risk factors for non-communicable diseases of Iran. Diabetes Care. 2008;31:96–98. doi: 10.2337/dc07-0959.
    1. Lillioja S., Mott D.M., Spraul M., Ferraro R., Foley J.E., Ravussin E., Knowler W.C., Bennett P.H., Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of pima Indians. N. Engl. J. Med. 1993;329:1988–1992. doi: 10.1056/NEJM199312303292703.
    1. Bohl M., Bjornshave A., Larsen M.K., Gregersen S., Hermansen K. The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. Eur. J. Clin. Nutr. 2017;71:76–82. doi: 10.1038/ejcn.2016.207.
    1. Pastors J.G., Warshaw H., Daly A., Franz M., Kulkarni K. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care. 2002;25:608–613. doi: 10.2337/diacare.25.3.608.
    1. Pastors J.G. Medications or lifestyle change with medical nutrition therapy. Curr. Diabetes Rep. 2003;3:386–391. doi: 10.1007/s11892-003-0082-1.
    1. Yeh G.Y., Eisenberg D.M., Kaptchuk T.J., Phillips R.S. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26:1277–1294. doi: 10.2337/diacare.26.4.1277.
    1. Anderson R.A., Broadhurst C.L., Polansky M.M., Schmidt W.F., Khan A., Flanagan V.P., Schoene N.W., Graves D.J. Isolation and characterization of polyphenol type-a polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 2004;52:65–70. doi: 10.1021/jf034916b.
    1. Ebadi M. Pharmacodynamic Basis of Herbal Medicine. 1st ed. CRC Press; Boca Raton, FL, USA: 2006.
    1. Cao H., Polansky M.M., Anderson R.A. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3t3-l1 adipocytes. Arch. Biochem. Biophys. 2007;459:214–222. doi: 10.1016/j.abb.2006.12.034.
    1. Allen R.W., Schwartzman E., Baker W.L., Coleman C.I., Phung O.J. Cinnamon use in type 2 diabetes: An updated systematic review and meta-analysis. Ann. Fam. Med. 2013;11:452–459. doi: 10.1370/afm.1517.
    1. Crawford P. Effectiveness of cinnamon for lowering hemoglobin a1c in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009;22:507–512. doi: 10.3122/jabfm.2009.05.080093.
    1. Blevins S.M., Leyva M.J., Brown J., Wright J., Scofield R.H., Aston C.E. Effect of cinnamon on glucose and lipid levels in non insulin-dependent type 2 diabetes. Diabetes Care. 2007;30:2236–2237. doi: 10.2337/dc07-0098.
    1. Mang B., Wolters M., Schmitt B., Kelb K., Lichtinghagen R., Stichtenoth D.O., Hahn A. Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Investig. 2006;36:340–344. doi: 10.1111/j.1365-2362.2006.01629.x.
    1. Vanschoonbeek K., Thomassen B.J., Senden J.M., Wodzig W.K., van Loon L.J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006;136:977–980.
    1. Vafa M., Mohammadi F., Shidfar F., Sormaghi M.S., Heidari I., Golestan B., Amiri F. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int. J. Prev. Med. 2012;3:531–536.
    1. Yamagishi S., Maeda S., Matsui T., Ueda S., Fukami K., Okuda S. Role of advanced glycation end products (ages) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta. 2012;1820:663–671. doi: 10.1016/j.bbagen.2011.03.014.
    1. Pourvali K., Abbasi M., Mottaghi A. Role of superoxide dismutase 2 gene ala16val polymorphism and total antioxidant capacity in diabetes and its complications. Avic. J. Med. Biotechnol. 2016;8:48–56.
    1. Amin K.A., Abd El-Twab T.M. Oxidative markers, nitric oxide and homocysteine alteration in hypercholesterolimic rats: Role of atorvastatine and cinnamon. Int. J. Clin. Exp. Med. 2009;2:254–265.
    1. Moselhy S.S., Ali H.K. Hepatoprotective effect of cinnamon extracts against carbon tetrachloride induced oxidative stress and liver injury in rats. Biol. Res. 2009;42:93–98. doi: 10.4067/S0716-97602009000100009.
    1. Peng X., Cheng K.W., Ma J., Chen B., Ho C.T., Lo C., Chen F., Wang M. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 2008;56:1907–1911. doi: 10.1021/jf073065v.
    1. Mashhadi N.S., Ghiasvand R., Hariri M., Askari G., Feizi A., Darvishi L., Hajishafiee M., Barani A. Effect of ginger and cinnamon intake on oxidative stress and exercise performance and body composition in Iranian female athletes. Int. J. Prev. Med. 2013;4:S31–S35.
    1. Pisprasert V., Ingram K.H., Lopez-Davila M.F., Munoz A.J., Garvey W.T. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: Impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care. 2013;36:845–853. doi: 10.2337/dc12-0840.
    1. Khan A., Safdar M., Ali Khan M.M., Khattak K.N., Anderson R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26:3215–3218. doi: 10.2337/diacare.26.12.3215.

Source: PubMed

3
Tilaa