An update on diabetic kidney disease, oxidative stress and antioxidant agents

Leila Mahmoodnia, Esmat Aghadavod, Sara Beigrezaei, Mahmoud Rafieian-Kopaei, Leila Mahmoodnia, Esmat Aghadavod, Sara Beigrezaei, Mahmoud Rafieian-Kopaei

Abstract

Diabetes mellitus is a metabolic disease that is defined by relative or absolute deficiency of insulin secretion. Diabetic kidney disease seems to be one of the most frequent complications of diabetes mellitus. Based on evidence, increased free-radical formation and/or diminished antioxidant defenses induce oxidative stress that is implicated in the pathogenesis of diabetic kidney disease. It is evident that diabetic state induces oxidative stress through different signaling pathways as well as reactive oxygen species (ROS) formation that attributes to the activation of various downstream signaling cascade leading to structural the way to structural and functional changes in kidney.

Keywords: Antioxidant; Diabetes mellitus; Kidney disease; Oxidative stress.

References

    1. Adeshara KA, Diwan AG, Tupe RS. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets. 2016;17:1309–28.
    1. Arévalo-Lorido JC, Carretero-Gómez J, García-Sánchez F, Maciá-Botejara E, Ramiro-Lozano JM, Masero-Carretero A. et al. Secondary hyperparathyroidism prevalence and profile, between diabetic and non-diabetic patients with stage 3 to 4 chronic kidney disease attended in internal medicine wards MiPTH study. Diabetes Metab Syndr. 2016;10:S16–21. doi: 10.1016/j.dsx.2016.01.011.
    1. Badal SS, Danesh FR. diabetic nephropathy: emerging biomarkers for risk assessment. Diabetes. 2015;64:3063–5. doi: 10.2337/db15-0738.
    1. Ng KP, Jain P, Gill PS, Heer G, Townend J, Freemantle N. et al. Results and lessons from the Spironolactone To Prevent Cardiovascular Events in Early Stage Chronic Kidney Disease (STOP-CKD) randomised controlled trial. BMJ Open. 2016;6:e010519. doi: 10.1136/bmjopen-2015-010519.
    1. Jagdale AD, Bavkar LN, More TA, Joglekar MM, Arvindekar AU. Strong inhibition of the polyol pathway diverts glucose flux to protein glycation leading to rapid establishment of secondary complications in diabetes mellitus. J Diabetes Complications. 2016;30:398–405. doi: 10.1016/j.jdiacomp.
    1. Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7:90–110. doi: 10.14336/AD.2015.0702.
    1. Muhl L, Moessinger C, Adzemovic MZ, Dijkstra MH, Nilsson I, Zeitelhofer M. et al. Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney. Cell Tissue Res. 2016;365:51–63. doi: 10.1007/s00441-016-2377-y.
    1. Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications. 2016;30:738–45.
    1. Wu Y, Zhang M, Liu R, Zhao C. Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells. Yonsei Med J. 2016;57:1252–1259. doi: 10.3349/ymj.2016.57.5.1252.
    1. Wu J, Han J, Hou B, Deng C, Wu H, Shen L. Sulforaphane inhibits TGF-β-induced epithelial-mesenchymal transition of hepatocellular carcinoma cells via the reactive oxygen species-dependent pathway. Oncol Rep. 2016;35:2977–83.
    1. Kawanami D, Matoba K, Utsunomiya K. Signaling pathways in diabetic nephropathy. Histol Histopathol. 2016;31:1059–67. doi: 10.14670/HH-11-777.
    1. Elsherbiny NM, Al-Gayyar MM. The role of IL-18 in type 1 diabetic nephropathy: the problem and future treatment. Cytokine. 2016;81:15–22. doi: 10.1016/j.cyto.2016.01.014.
    1. McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S. et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015;129:1237–49. doi: 10.1042/CS20150427.
    1. Oikari S, Makkonen K, Jawahar Deen A, Tyni I, Kärnä R, H Tammi R. et al. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis. Glycobiology. 2016;26:710–22. doi: 10.1093/glycob/cww019.
    1. Sharma M, Gupta S, Singh K, Mehndiratta M, Gautam A, Kalra OP. et al. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes Metab Syndr. 2016;10:194–197. doi: 10.1016/j.dsx.2016.06.006.
    1. Böttinger EP, Bitzer M. TGF-ß signaling in renal disease. JASN. 2002;13:2600–10. doi: 10.1097/.
    1. ZiyadehI FN. Mediators of diabetic renal disease: the case for TGF-ß as the major mediator. JASN. 2004;15:S55–S57. doi: 10.1097/01.ASN.0000093460.24823.5B.
    1. Ceriello A, Testa R, Genovese S. Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis. 2016;26:285–92. doi: 10.1016/j.numecd.2016.01.006.
    1. Sun L, Dutta RK, Xie P, Kanwar YS. myo-Inositol oxygenase overexpression accentuates generation of reactive oxygen species and exacerbates cellular injury following high glucose ambience: a new mechanism relevant to the pathogenesis of diabetic nephropathy. J Biol Chem. 2016;291:5688–707. doi: 10.1074/jbc.M115.669952.
    1. Gluhovschi C, Gluhovschi G, Petrica L, Timar R, Velciov S, Ionita I. et al. Urinary biomarkers in the assessment of early diabetic nephropathy. J Diabetes Res. 2016;2016:4626125. doi: 10.1155/2016/4626125.
    1. Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol Bio Syst. 2016;12:1090–105. doi: 10.1039/C6MB00014B.
    1. Mogensen CE, Keane WF, Bennett PH, Jerums G, Parving HH, Passa P. et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet. 1995;346:1080–4.
    1. Thomas MC. Epigenetic Mechanisms in Diabetic Kidney Disease. Curr Diab Rep 2016;1631. doi: 10.1007/s11892-016-0723-9.
    1. Sutariya B, Jhonsa D, Saraf MN. TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol. 2016;38:39–49.
    1. Yao F, Zhang M, Chen L. 5’-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications. Acta Pharm Sin B. 2016;6:20–5.
    1. Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD. Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr. 2002;56:1137–42.
    1. Packer L, Witt EH, Tritschler HJ. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19:227–50.
    1. Nasri H, Behradmanesh S, Ahmadi A, Rafieian-Kopaei M. Impact of oral vitamin D (cholecalciferol) replacement therapy on blood pressure in type 2 diabetes patients; a randomized, double-blind, placebo controlled clinical trial. J Nephropathol. 2014;3:29–33. doi: 10.12860/jnp.2014.07.
    1. Sönmez MF, Dündar M. Ameliorative effects of pentoxifylline on NOS induced by diabetes in rat kidney. Ren Fail. 2016;38:605–13. doi: 10.3109/0886022X.2016.1149688.
    1. Zhang Y, Kong J, Deb DK, Chang A, Li YC. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol. 2010;21:966–73. doi: 10.1681/ASN.2009080872.
    1. Testa R, Bonfigli AR, Genovese S, De Nigris V, Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients. 2016;8:310. doi: 10.3390/nu8050310.

Source: PubMed

3
Tilaa