N-acetyl cysteine administration affects cerebral blood flow as measured by arterial spin labeling MRI in patients with multiple sclerosis

Shiva Shahrampour, Justin Heholt, Andrew Wang, Faezeh Vedaei, Feroze B Mohamed, Mahdi Alizadeh, Ze Wang, George Zabrecky, Nancy Wintering, Anthony J Bazzan, Thomas P Leist, Daniel A Monti, Andrew B Newberg, Shiva Shahrampour, Justin Heholt, Andrew Wang, Faezeh Vedaei, Feroze B Mohamed, Mahdi Alizadeh, Ze Wang, George Zabrecky, Nancy Wintering, Anthony J Bazzan, Thomas P Leist, Daniel A Monti, Andrew B Newberg

Abstract

Background: The purpose of this study was to explore if administration of N-acetyl-cysteine (NAC) in patients with multiple sclerosis (MS) resulted in altered cerebral blood flow (CBF) based on Arterial Spin Labeling (ASL) magnetic resonance imaging (MRI).

Methods: Twenty-three patients with mild to moderate MS, (17 relapsing remitting and 6 primary progressive) were randomized to either NAC plus standard of care (N = 11), or standard of care only (N = 12). The experimental group received NAC intravenously (50 mg/kg) once per week and orally (500mg 2x/day) the other six days. Patients in both groups were evaluated initially and after 2 months (of receiving the NAC or waitlist control) with ASL MRI to measure CBF. Clinical symptom questionnaires were also completed at both time points.

Results: The CBF data showed significant differences in several brain regions including the pons, midbrain, left temporal and frontal lobe, left thalamus, right middle frontal lobe and right temporal/hippocampus (p < 0.001) in the MS group after treatment with NAC, when compared to the control group. Self-reported scores related to cognition and attention were also significantly improved in the NAC group as compared to the control group.

Conclusions: The results of this study suggest that NAC administration alters resting CBF in MS patients, and this is associated with qualitative improvements in cognition and attention. Given these findings, large scale efficacy studies will be of value to determine the potential clinical impact of NAC over the course of illness in patients with MS, as well as the most effective dosages and differential effects across subpopulations.

Keywords: Antioxidant; Arterial spin labeling MRI; Cerebral blood flow; Cognition; Multiple sclerosis; N-acetyl cysteine; NAC.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021 The Author(s).

Figures

Figure 1
Figure 1
Panel A (top row) shows the comparison of the pre (left) and post (right) scan of an MS patient in the NAC group demonstrating a marked increase in global CBF after two months of receiving NAC. Panel B (bottom row) shows the comparison of the pre (left) and post (right) scan of a control patient revealing a decrease in global CBF during the waitlist period.

References

    1. Goldenberg M.M. Multiple sclerosis review. PT. 2012;37(3):175–184.
    1. Ibitoye R., Kemp K., Rice C., Hares K., Scolding N., Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomarkers Med. 2016;10(8):889–902.
    1. Sies H., Cadenas E. Oxidative stress: damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985;311(1152):617–631.
    1. Johnson W.M., Wilson-Delfosse A.L., Mieyal J.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients. 2012;4(10):1399–1440.
    1. van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta. 2011;1812(2):141–150.
    1. Dringen R., Hirrlinger J. Glutathione pathways in the brain. Biol. Chem. 2003;384(4):505–516.
    1. Meister A. Glutathione metabolism. Methods Enzymol. 1995;251:3–7.
    1. Choi I.Y., Lee S.P., Denney D.R., Lynch S.G. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult. Scler. 2011;17(3):289–296.
    1. Ljubisavljevic S., Stojanovic I., Pavlovic R. The reduced glutathione and S-nitrosothiols levels in acute phase of experimental demyelination-pathophysiological approach and possible clinical relevancy. Neuroscience. 2012;219:175–182.
    1. Carvalho A.N., Lim J.L., Nijland P.G., Witte M.E., Van Horssen J. Glutathione in multiple sclerosis: more than just an antioxidant? Mult. Scler. 2014;20(11):1425–1431.
    1. Gordon G.R., Mulligan S.J., MacVicar B.A. Astrocyte control of the cerebrovasculature. Glia. 2007;55(12):1214–1221.
    1. Stickland R., Allen M., Magazzini L. Neurovascular coupling during visual stimulation in multiple sclerosis: a MEG-fMRI study. Neuroscience. 2019;403:54–69.
    1. Carvalho C., Moreira P.I. Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front. Physiol. 2018;9:806.
    1. Debernard L., Melzer T.R., Van Stockum S. Reduced grey matter perfusion without volume loss in early relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85(5):544–551.
    1. Rashid W., Parkes L.M., Ingle G.T. Abnormalities of cerebral perfusion in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2004;75(9):1288–1293.
    1. Doche E., Lecocq A., Maarouf A. Hypoperfusion of the thalamus is associated with disability in relapsing remitting multiple sclerosis. J. Neuroradiol. 2017;44(2):158–164.
    1. Narayana P.A., Zhou Y., Hasan K.M., Datta S., Sun X., Wolinsky J.S. Hypoperfusion and T1-hypointense lesions in white matter in multiple sclerosis. Mult. Scler. 2014;20(3):365–373.
    1. Haider L., Zrzavy T., Hametner S. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807–815.
    1. Chiaravalloti N.D., DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008;7(12):1139–1151.
    1. Mohr D.C., Lovera J., Brown T. A randomized trial of stress management for the prevention of new brain lesions in MS. Neurology. 2012;79(5):412–419.
    1. Meyer-Arndt L., Hetzer S., Asseyer S. Blunted neural and psychological stress processing predicts future grey matter atrophy in multiple sclerosis. Neurobiol Stress. 2020;13:100244.
    1. Calabrese V., Scapagnini G., Ravagna A. Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and S-nitrosothiols and with changes in glutathione levels. J. Neurosci. Res. 2002;70(4):580–587.
    1. Haider L., Fischer M.T., Frischer J.M. Oxidative damage in multiple sclerosis lesions. Brain. 2001;134(Pt 7):1914–1924.
    1. Baumgartner A., Frings L., Schiller F. Regional neuronal activity in patients with relapsing remitting multiple sclerosis. Acta Neurol. Scand. 2018;138(6):466–474.
    1. Bunchorntavakul C., Reddy K.R. Acetaminophen (APAP or N-Acetyl-p-Aminophenol) and acute liver failure. Clin. Liver Dis. 2018;22(2):325–346.
    1. Holmay M.J., Terpstra M., Coles L.D. N-Acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin. Neuropharmacol. 2013;36(4):103–106.
    1. Martinez M., Martinez N., Hernandez A.I., Ferrandiz M.L. Hypothesis: can N-acetylcysteine be beneficial in Parkinson's disease? Life Sci. 1999;64(15):1253–1257.
    1. Ljubisavljevic S., Stojanovic I., Pavlovic D., Sokolovic D., Stevanovic I. Aminoguanidine and N-acetyl-cysteine supress oxidative and nitrosative stress in EAE rat brains. Redox Rep. 2011;16(4):166–172.
    1. Stanislaus R., Gilg A.G., Singh A.K., Singh I. N-acetyl-L-cysteine ameliorates the inflammatory disease process in experimental autoimmune encephalomyelitis in Lewis rats. J. Autoimmune Dis. 2005;2(1):4.
    1. Bavarsad Shahripour R., Harrigan M.R., Alexandrov A.V. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 2014;4(2):108–122.
    1. Monti D.A., Zabrecky G., Leist T.P. N-acetyl cysteine administration is associated with increased cerebral glucose metabolism in patients with multiple sclerosis: an exploratory study. Front. Neurol. 2020;11:88. 2020.
    1. Chen J.J., Carletti F., Young V., McKean D., Quaghebeur G. MRI differential diagnosis of suspected multiple sclerosis. Clin. Radiol. 2016;71(9):815–827.
    1. Filippi M., Preziosa P., Rocca M.A. MRI in multiple sclerosis: what is changing? Curr. Opin. Neurol. 2018;31(4):386–395.
    1. Jahng G.H., Li K.L., Ostergaard L., Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J. Radiol. 2014;15(5):554–577.
    1. Weygandt M., Meyer-Arndt L., Behrens J.R. Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A. 2016;113(47):13444–13449.
    1. de la Pena M.J., Pena I.C., Garcia P.G. Early perfusion changes in multiple sclerosis patients as assessed by MRI using arterial spin labeling. Acta Radiol Open. 2019;8(12) 2058460119894214.
    1. Lagana M.M., Pelizzari L., Baglio F. Relationship between MRI perfusion and clinical severity in multiple sclerosis. Neural Regen Res. 2020;15(4):646–652.
    1. Polman C.H., Reingold S.C., Banwell B. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69(2):292–302.
    1. Riazi A., Hobart J.C., Laping D.L. Using the SF-36 measure to compare the health impact of multiple sclerosis and Parkinson's disease with normal population health profiles. J. Neurol. Neurosurg. Psychiatry. 2013;74:710–714.
    1. Sullivan M., Edgley K., DeHousx E. A survey of multiple sclerosis, part 1: perceived cognitive problems and compensatory strategy use. Can. J. Rehabil. 1990;4:99–105.
    1. Jezzard P., Chappell M.A., Okell T.W. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J. Cerebr. Blood Flow Metabol. 2018;38(4):603–626.
    1. Wang Z., Aguirre G.K., Rao H. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magn. Reson. Imaging. 2008;26(2):261–269.
    1. Warmuth C., Gunther M., Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003;228(2):523–532.
    1. Li Y., Dolui S., Xie D.F., Wang Z. Alzheimer’s Disease Neuroimaging Initiative. Priors-guided slice-wise adaptive outlier cleaning for arterial spin labeling perfusion MRI. J. Neurosci. Methods. 2018;307:248–253.
    1. Wang Z., Das S.R., Xie S.X., Arnold S.E., Detre J.A., Wolk D.A., Alzheimer's Disease Neuroimaging Initiative Arterial spin labeled MRI in prodromal Alzheimer's disease: a multi-site study. NeuroImage Clinical. 2013;2:630–636.
    1. Ohl K., Tenbrock K., Kipp M. Oxidative stress in multiple sclerosis: central and peripheral mode of action. Exp. Neurol. 2016;277:58–67.
    1. van Horssen J., Schreibelt G., Drexhage J. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 2008;45(12):1729–1737.
    1. Medved I., Brown M.J., Bjorksten A.R. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J. Appl. Physiol. 2004;97(4):1477–1485.
    1. Cobley J.N., McGlory C., Morton J.P., Close G.L. N-acetylcysteine attenuates fatigue following repeated-bouts of intermittent exercise: practical implications for tournament situations. Int. J. Sport Nutr. Exerc. Metabol. 2011
    1. Tasset I., Aguera E., Sanchez-Lopez F. Peripheral oxidative stress in relapsing-remitting multiple sclerosis. Clin. Biochem. 2012;45(6):440–444.
    1. Hirsch E.C., Faucheux B.A. Iron metabolism and Parkinson's disease. Mov. Disord. 1998;13(Suppl 1):39–45.
    1. Qian H.R., Yang Y. Neuron differentiation and neuritogenesis stimulated by N-acetylcysteine (NAC) Acta Pharmacol. Sin. 2009;30(7):907–912.
    1. Borgström L., Kågedal B., Paulsen O. Pharmacokinetics of N-acetylcysteine in man. Eur. J. Clin. Pharmacol. 1986;31:217–222.
    1. Olsson B., Johansson M., Gabrielsson J., Bolme P. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur. J. Clin. Pharmacol. 1988;34:77–82.
    1. Cobley J.N., McGlory C., Morton J.P., Close G.L. N-Acetylcysteine's attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int. J. Sport Nutr. Exerc. Metabol. 2011;21:451–461.
    1. Coles L.D., Tuite P.J., Öz G. Repeated-dose oral N-Acetylcysteine in Multiple sclerosis: pharmacokinetics and effect on brain glutathione and oxidative stress. J. Clin. Pharmacol. 2017
    1. Tommasin S., Giannì C., De Giglio L., Pantano P. Neuroimaging techniques to assess inflammation in multiple sclerosis. Neuroscience. 2019;403:4–16.
    1. Monti D.A., Zabrecky G., Kremens D. N-acetyl cysteine is associated with dopaminergic improvement in Parkinson's disease. Clin. Pharmacol. Ther. 2019 2019.
    1. Leocani L., Colombo B., Magnani G. Fatigue in multiple sclerosis is associated with abnormal cortical activation to voluntary movement-EEG evidence. Neuroimage. 2021;13(6 Pt 1):1186–1192.
    1. Tahedl M., Levine S.M., Greenlee M.W., Weissert R., Schwarzbach J.V. CBF in multiple sclerosis: recent findings and future directions. Front. Neurol. 2018;9:828.
    1. Cader S., Palace J., Matthews P. Cholinergic agonism alters cognitive processing and enhances brain CBF in patients with multiple sclerosis. J. Psychopharmacol. 2009;23:686–696.
    1. Lovera J., Kovner B. Cognitive impairment in multiple sclerosis. Curr. Neurol. Neurosci. Rep. 2012;12:618–627.
    1. Miller E., Morel A., Redlicka J., Miller I., Saluk J. Pharmacological and non-pharmacological therapies of cognitive impairment in multiple sclerosis. Curr. Neuropharmacol. 2018;16:475–483.
    1. Rao S.M., Leo G.J., Bernardin L., Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991;41:685–691.
    1. Guenter W., Jabłońska J., Maciej Bieliński M., Borkowska A. Neuroimaging and genetic correlates of cognitive dysfunction in multiple sclerosis. Psychiatr. Pol. 2015;49:897–910.
    1. Cruz-Gómez Á.J., Ventura-Campos N., Belenguer A. The link between resting-state CBF and cognition in MS patients. Mult. Scler. 2014;20:338–348.
    1. Louapre C., Perlbarg V., García-Lorenzo D. Brain networks disconnection in early multiple sclerosis cognitive deficits: an anatomofunctional study. Hum. Brain Mapp. 2014;35:4706–4717.
    1. Srisurapanont M., Suttajit S., Eurviriyanukul K., Varnado P. Discrepancy between objective and subjective cognition in adults with major depressive disorder. Sci. Rep. 2017;7(1):3901.
    1. Mayo C.D., Miksche K., Attwell-Pope K., Gawryluk J.R. The relationship between physical activity and symptoms of fatigue, mood, and perceived cognitive impairment in adults with multiple sclerosis. J. Clin. Exp. Neuropsychol. 2019;41(7):715–722.
    1. Thelen J.M., Lynch S.G., Bruce A.S., Hancock L.M., Bruce J.M. Polypharmacy in multiple sclerosis: relationship with fatigue, perceived cognition, and objective cognitive performance. J. Psychosom. Res. 2014;76(5):400–404.
    1. Korten N.C., Comijs H.C., Penninx B.W., Deeg D.J. Perceived stress and cognitive function in older adults: which aspect of perceived stress is important? Int. J. Geriatr. Psychiatr. 2017;32(4):439–445.

Source: PubMed

3
Tilaa