SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective

Abdo A Elfiky, Abdo A Elfiky

Abstract

New treatment against SARS-CoV-2 now is a must. Nowadays, the world encounters a huge health crisis by the COVID-19 viral infection. Nucleotide inhibitors gave a lot of promising results in terms of its efficacy against different viral infections. In this work, molecular modeling, docking, and dynamics simulations are used to build a model for the viral protein RNA-dependent RNA polymerase (RdRp) and test its binding affinity to some clinically approved drugs and drug candidates. Molecular dynamics is used to equilibrate the system upon binding calculations to ensure the successful reproduction of previous results, to include the dynamics of the RdRp, and to understand how it affects the binding. The results show the effectiveness of Sofosbuvir, Ribavirin, Galidesivir, Remdesivir, Favipiravir, Cefuroxime, Tenofovir, and Hydroxychloroquine, in binding to SARS-CoV-2 RdRp. Additionally, Setrobuvir, YAK, and IDX-184, show better results, while four novel IDX-184 derivatives show promising results in attaching to the SARS-CoV-2 RdRp. There is an urgent need to specify drugs that can selectively bind and subsequently inhibit SARS-CoV-2 proteins. The availability of a punch of FDA-approved anti-viral drugs can help us in this mission, aiming to reduce the danger of COVID-19. The compounds 2 and 3 may tightly bind to the SARS-CoV-2 RdRp and so may be successful in the treatment of COVID-19.

Keywords: COVID-19; RdRp; SARS-CoV-2; drug repurposing; molecular docking; molecular dynamics simulation.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
(A) 2 D structures of the FDA approved anti-viral drugs; Sofosbuvir, Ribavirin, Galidesivir, Remdesivir, Favipiravir, and Tenofovir. (B) 2 D structures of the guanosine derivative IDX-184 and its modifications; compound 1 ((2-hydroxyphenyl)oxidanyl), compound 2 ((3,5-dihydroxyphenyl)oxidanyl), compound 3 ((3-hydroxyphenyl)oxidanyl), and compound 4 ((3-sulfanylphenyl)oxidanyl).
Figure 2.
Figure 2.
MDS analysis (A) Root Mean Square Deviation (RMSD) (blue line), Radius of Gyration (RoG) (orange line), and Surface Accessible Surface Area (SASA) (gray line) versus time of the simulation. (B) The per residue Root Mean Square Fluctuation (RMSF) (blue line) during the 51 ns of the MDS. The structure of SARS-CoV-2 RdRp shown by surface (left) and cartoon (right) representations. The N (blue) and C (red) terminals are shown in the balls representations, while the active site aspartates are depicted in black. The most movable parts of the protein are colored in orange (K712-D716), yellow (A731-V739), and wheat (Y775-M790), while the entire protein is in green.
Figure 3.
Figure 3.
(A) Bar graph representing the average binding energies (in kcal/mol) calculated by AutoDock Vina software for NTPs (sky blue column), Sofosbuvir (blue), Ribavirin (blue), Galidesivir (blue), Remdesivir (blue), Favipiravir (violet), Cefuroxime (cyan), Tenofovir (blue), and Hydroxychloroquine (green). (B) Bar graph representing the average binding energies for the nucleotides (GTP, CTP, UTP, and ATP), and other compounds. The compounds IDX-184, YAK, Setrobuvir (green column) are the best based on its binding affinities to SARS-CoV-2 RdRp. The negative control compounds (Cinnamaldehyde and Thymoquinone) are depicted in red columns, while other compounds with moderate affinities in yellow columns. (C) A bar graph shows the average binding energies for the IDX-184 (orange column) and its derivative compounds (1-4) (red columns). Error bars represent the standard deviation, while orange circles represent the binding affinities of the compounds to the solved SARS-CoV-2 RdRp structure (PDB ID: 7BTF).

References

    1. Aanouz I., Belhassan A., El Khatabi K., Lakhlifi T., El Idrissi M., & Bouachrine M. (2020). Moroccan Medicinal plants as inhibitors of COVID-19: Computational investigations. Journal of Biomolecular Structure and Dynamics, 1–12. 10.1080/07391102.2020.1758790
    1. Al-Tawfiq J. A., Al-Homoud A. H., & Memish Z. A. (2020). Remdesivir as a possible therapeutic option for the COVID-19. Travel Medicine and Infectious Disease, 101615 10.1016/j.tmaid.2020.101615
    1. Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T. G., Bertoni M., Bordoli L., & Schwede T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. 10.1093/nar/gku340
    1. Bogoch I. I., Watts A., Thomas-Bachli A., Huber C., Kraemer M. U. G., & Khan K. (2020). Pneumonia of unknown etiology in Wuhan, China: Potential for international spread via commercial air travel. Journal of Travel Medicine. 10.1093/jtm/taaa008
    1. Boopathi S., Poma A. B., & Kolandaivel P. (2020). Novel 2019 Coronavirus Structure, Mechanism of Action, Anti-viral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 1–14. 10.1080/07391102.2020.1758788
    1. Chan J. F., Lau S. K., To K. K., Cheng V. C., Woo P. C., & Yuen K.-Y. (2015). Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clinical Microbiology Reviews, 28(2), 465–522. 10.1128/CMR.00102-14
    1. Dong L., Hu S., & Gao J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, 14(1), 58–60. 10.5582/ddt.2020.01012
    1. Doublie S., & Ellenberger T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. 10.1016/S0959-440X(98)80089-4
    1. Eisenberg D., Lüthy R., & Bowie J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles In Charles W. Carter Jr., and Robert M. Sweet (Eds.), Methods in enzymology (Vol. 277, pp. 396–404). Elsevier.
    1. Elfiky A. A. (2016). Zika viral polymerase inhibition using anti-HCV drugs both in market and under clinical trials. Journal of Medical Virology, 88(12), 2044–2051. 10.1002/jmv.24678
    1. Elfiky A. A. (2017). Zika virus: Novel Guanosine Derivatives revealed strong binding and possible inhibition of the polymerase [Research article]. Future Virology, 12(12), 721–728. 10.2217/fvl-2017-0081
    1. Elfiky A. A. (2019). Novel guanosine derivatives as anti-HCV NS5b polymerase: A QSAR and molecular docking study. Medicinal Chemistry, 15(2), 130–137. 10.2174/1573406414666181015152511
    1. Elfiky A. A. (2020. a). Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477 10.1016/j.lfs.2020.117477
    1. Elfiky A. A. (2020. b). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592 10.1016/j.lfs.2020.117592
    1. Elfiky A. A., & Azzam E. B. (2020). Novel Guanosine Derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1–12. 10.1080/07391102.2020.1758789
    1. Elfiky A. A., & Elshemey W. M. (2016). IDX-184 is a superior HCV direct-acting anti-viral drug: A QSAR study. Medicinal Chemistry Research, 25(5), 1005–1008. 10.1007/s00044-016-1533-y
    1. Elfiky A. A., & Elshemey W. M. (2018). Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. Journal of Medical Virology, 90(1), 13–18. 10.1002/jmv.24934
    1. Elfiky A. A., Elshemey W. M., Gawad W. A., & Desoky O. S. (2013). Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein Journal, 32(1), 75–80. 10.1007/s10930-013-9462-9
    1. Elfiky A. A., & Ismail A. (2019). Molecular dynamics and docking reveal the potency of novel GTP derivatives against RNA dependent RNA polymerase of genotype 4a HCV. Life Sciences, 238, 116958 10.1016/j.lfs.2019.116958
    1. Elfiky A. A., & Ismail A. M. (2017). Molecular Modeling and Docking revealed superiority of IDX-184 as HCV polymerase Inhibitor. Future Virology, 12(7), 339–347. 10.2217/fvl-2017-0027
    1. Elfiky A. A., & Ismail A. M. (2018). Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR and QSAR in Environmental Research, 29(5), 409–418. 10.1080/1062936X.2018.1454981
    1. Elfiky A. A., Mahdy S. M., & Elshemey W. M. (2017). Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. Journal of Medical Virology, 89(6), 1040–1047. 10.1002/jmv.24736
    1. Elmezayen A. D., Al-Obaidi A., Şahin A. T., & Yelekçi K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 1–12. 10.1080/07391102.2020.1758791
    1. Enayatkhani M., Hasaniazad M., Faezi S., Guklani H., Davoodian P., Ahmadi N., Einakian M. A., Karmostaji A., & Ahmadi K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 1–19. 10.1080/07391102.2020.1756411
    1. Ganesan A., & Barakat K. (2017). Applications of Computer-Aided Approaches in The Development of Hepatitis C Antiviral Agents. Expert Opinion on Drug Discovery, 12(4), 407–425. 10.1080/17460441.2017.1291628
    1. Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., … Rao Z. (2020). Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major anti-viral drug target. BioRxiv. 10.1101/2020.03.16.993386
    1. Gupta M. K., Vemula S., Donde R., Gouda G., Behera L., & Vadde R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2020.1751300
    1. Hasan A., Paray B. A., Hussain A., Qadir F. A., Attar F., Aziz F. M., Sharifi M., Derakhshankhah H., Rasti B., Mehrabi M., Shahpasand K., Saboury A. A., & Falahati M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 1–9. 10.1080/07391102.2020.1754293
    1. Hooft R. W., Vriend G., Sander C., & Abola E. E. (1996). Errors in protein structures. Nature, 381(6580), 272 10.1038/381272a0
    1. Hui D. S., I Azhar E., Madani T. A., Ntoumi F., Kock R., Dar O., Ippolito G., McHugh T. D., Memish Z. A., Drosten C., Zumla A., & Petersen E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. 10.1016/j.ijid.2020.01.009
    1. Ibrahim I. M., Abdelmalek D. H., Elshahat M. E., & Elfiky A. A. (2020). COVID-19 Spike-host cell receptor GRP78 binding site prediction. Journal of Infection, 80(5), 554–562. 10.1016/j.jinf.2020.02.026
    1. Ismail A. M., Elfiky A. A., & Elshemey W. M. (2020). Recognition of the gluconeogenic enzyme, Pck1, via the Gid4 E3 ligase: An in silico perspective. Journal of Molecular Recognition, 33(3), e2821 10.1002/jmr.2821
    1. Joan Pontius J. R. a S. J. W. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. Journal of Molecular Biology, 264, 121–136. 10.1006/jmbi.1996.0628
    1. Khan R. J., Jha R. K., Amera G. M., Jain M., Singh E., Pathak A., Singh R. P., Muthukumaran J., & Singh A. K. (2020. a). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 1–14. 10.1080/07391102.2020.1753577
    1. Khan S. A., Zia K., Ashraf S., Uddin R., & Ul-Haq Z. (2020. b). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 1–10. 10.1080/07391102.2020.1751298
    1. Kim S., Thiessen P. A., Bolton E. E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., & Shoemaker B. A. (2015). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. 10.1093/nar/gkv951
    1. Kirchdoerfer R. N., & Ward A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 2342 10.1038/s41467-019-10280-3
    1. Laskowski R. A., Rullmann J. A. C., MacArthur M. W., Kaptein R., & Thornton J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular Nmr, 8(4), 477–486. 10.1007/BF00228148
    1. Leach A. (2001). Molecular modelling: Principles and applications (2nd ed.). England: Prentice Hall;
    1. Lii J. H., & Allinger N. L. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons. Journal of the American Chemical Society, 111(23), 8576–8582. 10.1021/ja00205a003
    1. Lythgoe M., & Middleton P. (2020). Ongoing clinical trials for the management of the COVID-19 pandemic. Trends in pharmaceutical Sciences [In press].
    1. Mark P., & Nilsson L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. 10.1021/jp003020w
    1. Muralidharan N., Sakthivel R., Velmurugan D., & Gromiha M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–6. 10.1080/07391102.2020.1752802
    1. NCBI. (2020). National Center of Biotechnology Informatics (NCBI) database website
    1. Organization W. H. (2020. a). Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: Interim guidance.
    1. Organization W. H. (2020. b, January 10). Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection: Interim guidance.
    1. Organization W. H. (2020. c, January). Surveillance case definitions for human infection with novel coronavirus (nCoV): Interim guidance v1.
    1. Pant S., Singh M., Ravichandiran V., Murty U. S. N., & Srivastava H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–15. 10.1080/07391102.2020.1757510
    1. Parr J. (2020). Pneumonia in China: Lack of information raises concerns among Hong Kong health workers. England: British Medical Journal Publishing Group.
    1. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., & Ferrin T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. 10.1002/jcc.20084
    1. Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., & Schulten K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. 10.1002/jcc.20289
    1. Rothan H. A., & Byrareddy S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433 10.1016/j.jaut.2020.102433
    1. Salentin S., Schreiber S., Haupt V. J., Adasme M. F., & Schroeder M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. 10.1093/nar/gkv315
    1. Sarma P., Sekhar N., Prajapat M., Avti P., Kaur H., Kumar S., Singh S., Kumar H., Prakash A., Dhibar D. P., & Medhi B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure and Dynamics, 1–11. 10.1080/07391102.2020.1753580
    1. SAVES. (2020). Structural analysis and verification server website
    1. Stewart J. J. P. (2007). Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13(12), 1173–1213. 10.1007/s00894-007-0233-4
    1. Summers K. L., Mahrok A. K., Dryden M. D., & Stillman M. J. (2012). Structural properties of metal-free apometallothioneins. Biochemical and Biophysical Research Communications, 425(2), 485–492. 10.1016/j.bbrc.2012.07.141
    1. Trott O., & Olson A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. 10.1002/jcc.21334
    1. WHO. (2016, June 23). Middle East respiratory syndrome coronavirus (MERS-CoV). Retrieved October 8 2016 from .
    1. Yang L. (2020). China confirms human-to-human transmission of coronavirus [Web page].

Source: PubMed

3
Tilaa