Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex

Bo Zhang, Sharon S McDaniel, Nicholas R Rensing, Michael Wong, Bo Zhang, Sharon S McDaniel, Nicholas R Rensing, Michael Wong

Abstract

Epilepsy is a common neurological disorder and cause of significant morbidity and mortality. Although antiseizure medication is the first-line treatment for epilepsy, currently available medications are ineffective in a significant percentage of patients and have not clearly been demonstrated to have disease-specific effects for epilepsy. While seizures are usually intractable to medication in tuberous sclerosis complex (TSC), a common genetic cause of epilepsy, vigabatrin appears to have unique efficacy for epilepsy in TSC. While vigabatrin increases gamma-aminobutyric acid (GABA) levels, the precise mechanism of action of vigabatrin in TSC is not known. In this study, we investigated the effects of vigabatrin on epilepsy in a knock-out mouse model of TSC and tested the novel hypothesis that vigabatrin inhibits the mammalian target of rapamycin (mTOR) pathway, a key signaling pathway that is dysregulated in TSC. We found that vigabatrin caused a modest increase in brain GABA levels and inhibited seizures in the mouse model of TSC. Furthermore, vigabatrin partially inhibited mTOR pathway activity and glial proliferation in the knock-out mice in vivo, as well as reduced mTOR pathway activation in cultured astrocytes from both knock-out and control mice. This study identifies a potential novel mechanism of action of an antiseizure medication involving the mTOR pathway, which may account for the unique efficacy of this drug for a genetic epilepsy.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. VGB treatment inhibited seizures and…
Figure 1. VGB treatment inhibited seizures and moderately improved survival in Tsc1 GFAPCKO mice.
(A) Representative EEG recordings of Tsc1GFAPCKO mice treated with vehicle or vigabatrin. (B) Seizures started to develop in vehicle-treated Tsc1GFAPCKO mice (Fig. 1A, KO + Veh) around 3 weeks and became progressively more frequent with age. VGB treatment (KO + VGB) almost completely suppressed the development of seizures in Tsc1GFAPCKO mice (*p<0.05 by one-way ANOVA, n = 13 mice/group). (C) Survival analysis showed that vehicle-treated Tsc1GFAPCKO mice die prematurely with 50% mortality around 7 weeks of age and 100% mortality by 11 weeks. VGB treatment modestly improved the survival of Tsc1GFAPCKO mice compared to the vehicle treated Tsc1GFAPCKO mice (*p<0.05 by Chi-Square test, comparing the two groups, n = 13 mice/group), but all VGB-treated mice still died by age of 14 weeks. KO = Tsc1GFAPCKO mice, Veh  =  vehicle, VGB  =  vigabatrin.
Figure 2. VGB treatment increased brain GABA…
Figure 2. VGB treatment increased brain GABA concentrations in Tsc1 GFAPCKO and control mice.
GABA levels were measured using a commercial mouse GABA ELISA kit. VGB treatment for one week increased the GABA levels in both neocortex (A) and hippocampus (B) of Tsc1GFAPCKO mice (KO+VGB), compared with the vehicle-treated Tsc1GFAPCKO group (KO+Veh). Similar effects of VGB were observed in control mice in hippocampus only (Cont+VGB versus Cont+Veh). Data were derived from three separate experiments. *p<0.05, **p<0.01 versus vehicle-treated mice by two-way ANOVA (n = 6–7 mice/group). Cont  =  control mice, KO  =  Tsc1GFAPCKO mice, Veh  =  vehicle, VGB  =  vigabatrin.
Figure 3. VGB treatment decreased the number…
Figure 3. VGB treatment decreased the number of GFAP positive cells in hippocampus of Tsc1 GFAPCKO mice.
(A) Vehicle-treated Tsc1GFAPCKO mice (KO + Veh) displayed a diffuse increase in GFAP-positive cells in neocortex and hippocampus compared with the vehicle-treated control mice (Cont + Veh). VGB treatment partially prevented this increase in GFAP-positive cells in Tsc1GFAPCKO mice (KO + VGB). (B) Quantitative analysis demonstrated a 2–2.5 fold increase in GFAP-positive cell in vehicle-treated Tsc1GFAPCKO group (KO + Veh) compared with vehicle-treated control group (Cont + Veh) in neocortex (CT), dentate gyrus (DG) and CA1 of hippocampus. #p<0.05, ## p<0.01, ### p<0.001 versus vehicle-treated control mice by two-way ANOVA (n = 4–5 mice/group). VGB treatment decreased GFAP-positive cells in Tsc1GFAPCKO mice (KO+VGB). **p<0.01 versus vehicle-treated Tsc1GFAPCKO mice by two-way ANOVA (n = 4–5 mice/group). Scale bars = 500 µm. Cont  =  control mice, KO  =  Tsc1GFAPCKO mice, Veh  =  vehicle, VGB  =  vigabatrin, CT  =  neocortex, DG  =  dentate gyrus, CA1  =  CA1 pyramidal cell layer of hippocampus.
Figure 4. VGB treatment did not prevent…
Figure 4. VGB treatment did not prevent neuronal disorganization in Tsc1 GFAPCKO mice.
The left panels show Cresyl violet staining of a brain section at low (upper) and high (lower) magnification of vehicle-treated control mice (Cont + Veh). Vehicle-treated Tsc1GFAPCKO group (KO + Veh) exhibited widely dispersed pyramidal cell layers (arrows in the middle panels) in all regions of hippocampus (CA1–CA4) compared with control mice. As shown in the right panels, VGB treated Tsc1GFAPCKO mice (KO + VGB) had a similar pattern as vehicle-treated Tsc1GFAPCKO group, with no apparent effect on this neuronal disorganization (arrows in right panel). Scale bar = 500 µm. Cont  =  control mice, KO  =  Tsc1GFAPCKO mice, Veh  =  vehicle, VGB  =  vigabatrin.
Figure 5. VGB decreased activation of the…
Figure 5. VGB decreased activation of the mTOR pathway in vivo.
(A, B) Western blotting shows P-S6 (Ser240/244), total S6, and beta-actin expression in neocortex (A) and hippocampus (B) of control mice and Tsc1GFAPCKO mice treated with vehicle or VGB at daily doses of 50, 100 and 200 mg/kg for 1 week. Quantitative summary demonstrates that vehicle-treated Tsc1GFAPCKO mice have significantly increased P-S6 levels compared with control mice (# p<0.05, ### p<0.001 versus control mice by two-way ANOVA, n = 5–9 mice/group), and VGB inhibited the activation of S6 in Tsc1GFAPCKO mice in a dose-dependent fashion (* p<0.05 versus vehicle-treated Tsc1GFAPCKO mice by two-way ANOVA, n = 5–9/group). The ratio of P-S6/total S6 was normalized to the vehicle-treated Tsc1GFAPCKO group. (C, D) Western blotting shows P-S6 (Ser240/244), total S6 and beta-actin expression in non-KO control mice administered vehicle or VGB at 50, 100 and 200 mg/kg/day for 1 week starting at age of three weeks. Quantitative summary demonstrates that VGB inhibited the activation of S6 in control mice in a dose-dependent fashion. The ratio of P-S6/total S6 was normalized to the vehicle-treated control group. *p<0.05, **p<0.01, *** p<0.001 versus vehicle-treated non-KO control mice by one-way ANOVA (n = 5–9 mice/group). Cont  =  control mice, KO  =  Tsc1GFAPCKO mice, Veh  =  vehicle.
Figure 6. VGB decreased activation of the…
Figure 6. VGB decreased activation of the mTOR pathway in vitro.
A) Western blotting shows P-S6 (Ser 240/244), total S6, and beta-actin expression in primary cultured astrocytes derived from Tsc1GFAPCKO and non-KO control mice. Vehicle or VGB at a dose of 0.06, 0.3 and 0.6 mM was added to the culture medium for 16 hours. Overall, Tsc1GFAPCKO astrocytes showed increased P-S6 expression compared with astrocytes from control mice. VGB blocked the activation of P-S6 in a dose-dependent fashion in both control and KO astrocytes. The ratio of P-S6/total S6 was normalized to the vehicle-treated control group (Cont) or vehicle-treated Tsc1GFAPCKO group (KO). Quantitative summary demonstrates that VGB treatment at doses of 0.3 and 0.6 mM significantly inhibits the activation of P-S6 in astrocytes of both Tsc1GFAPCKO and control mice. B) In contrast to VGB, phenobarbital had no effect on P-S6 expression in control astrocytes at doses that are effective in potentiating GABA-mediated inhibition . *p<0.05, **p<0.01 versus Veh by one-way ANOVA (n = 8 mice/group). Cont  =  control mice, KO  =  Tsc1GFAPCKO mice, Veh  =  vehicle.

References

    1. Elger CE, Schmidt D (2008) Modern management of epilepsy: a practical approach. Epilepsy Behav 12: 501–39.
    1. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342: 314–319.
    1. French JA (2007) Refractory epilepsy: clinical overview. Epilepsia 48(Suppl 1): 3–7.
    1. Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42: 515–524.
    1. French JA, Kanner AM, Bautista J, Abou-Khalil B, Browne T, et al. (2004) Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy. Report of the therapeutics and technology assessment subcommittee and quality standards subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 27: 1261–1273.
    1. Holmes GL, Stafstrom CE (2007) the Tuberous Sclerosis Study Group (2007) Tuberous Sclerosis Complex and epilepsy: recent developments and future challenges. Epilepsia 48: 617–630.
    1. Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele E (2010) The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 51: 1236–1241.
    1. Curatolo P, Verdechhia M, Bombardieri R (2001) Vigabatrin for tuberous sclerosis complex. Brain Dev 23: 649–653.
    1. Hancock E, Osborne JP (1999) Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: literature review. J Child Neurol 14: 71–74.
    1. Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P (2010) Early control of seizure improves long-term outcome in children with tuberous sclerosis complex. Eur J Paediatr Neurol 14: 146–149.
    1. Jozwiak S, Kotulska K, Domariska-Pakiela D, Lojsczyk B, Syczewska M, et al. (2011) Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 15: 424–431.
    1. Ben-Menachem E (2011) Mechanism of action of vigabatrin: correcting misperceptions. Acta Neurol Scan Suppl 192: 5–15.
    1. Willmore LJ, Abelson MB, Ben-Menachem E, Pellock JM, Shields WD (2009) Vigabatrin: 2008 update. Epilepsia 50: 163–173.
    1. Jung MJ, Lippert B, Metcalf BW, Bohlen P, Schecter PJ (1977) gamma-vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J Neurochem 29: 797–802.
    1. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355: 1345–1356.
    1. Wong M (2010) Mammalian target of rapamycin (mTOR) inhibition as potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epilepsia 51: 27–36.
    1. Galanopoulou AS, Gorter JA, Cepeda C (2012) Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target. Epilepsia 53: 1119–1130.
    1. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, et al. (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363: 1801–1811.
    1. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, et al. (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52: 285–296.
    1. Erbayat-Altay E, Zeng LH, Xu L, Gutmann D, Wong M (2007) The natural history and treatment of epilepsy in a murine model of tuberous sclerosis. Epilepsia 48: 1470–1476.
    1. Zeng LH, Xu L, Gutmann DH, Wong M (2008) Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63: 444–453.
    1. Zhang B, Yang L, Konishi Y, Maeda N, Sakanaka M, et al. (2002) Suppressive effects of phosphodiesterase type IV inhibitors on rat cultured microglial cells: comparison with other types of cAMP-elevating agents. Neuropharm 42: 262–269.
    1. Overstreet LS, Westbrook GL (2001) Paradoxical reduction of synaptic inhibition by vigabatrin. J Neurophysiol 86: 596–603.
    1. Wu Y, Wang W, Richerson GB (2001) GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci 21: 2630–2639.
    1. Schulz DW, Macdonald RL (1981) Barbiturate enhancement of GABA-mediated inhibition and activation of chloride conductance: correlation with anticonvulsant and anesthetic actions. Brain Res 209: 177–188.
    1. Hertz E, Shargool M, Hertz L (1986) Effects of barbiturates on energy metabolism by cultured astrocytes and neurons in the presence of normal and elevated concentrations of potassium. Neuropharmacol 25: 533–539.
    1. Hertz L, Mukerji S (1980) Diazepam receptors on mouse astrocytes in primary cultures: displacement by pharmacologically active concentrations of benzodiazepines or barbiturates. Can J Physiol Pharmacol 58: 217–220.
    1. Zhang B, Wong M (2012) Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53: 506–511.
    1. Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin (mTOR) signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29: 6964–6972.
    1. Zeng LH, Ouyang Y, Gazit V, Cirrito JR, Jansen LA, et al. (2007) Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiol Dis 28: 184–196.
    1. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, et al. (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282: 14056–14064.
    1. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, et al. (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28: 5422–5432.
    1. Goto J, Talos DM, Klein P, Qin W, Chekaluk YI, et al. (2011) Regulable neural progenitor-specific TSC1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc Natl Acad Sci USA 108: 1070–1079.
    1. Carson RP, Van Nielen DL, Winzenburger PA, Ess K (2012) Neuronal and glia abnormalities in TSC1-deficient forebrain and partial rescue by rapamycin. Neurobiol Dis. 45: 369–380.
    1. Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulo AS (2011) A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 43: 322–328.

Source: PubMed

3
Tilaa