Computational models of neurophysiological correlates of tinnitus

Roland Schaette, Richard Kempter, Roland Schaette, Richard Kempter

Abstract

The understanding of tinnitus has progressed considerably in the past decade, but the details of the mechanisms that give rise to this phantom perception of sound without a corresponding acoustic stimulus have not yet been pinpointed. It is now clear that tinnitus is generated in the brain, not in the ear, and that it is correlated with pathologically altered spontaneous activity of neurons in the central auditory system. Both increased spontaneous firing rates and increased neuronal synchrony have been identified as putative neuronal correlates of phantom sounds in animal models, and both phenomena can be triggered by damage to the cochlea. Various mechanisms could underlie the generation of such aberrant activity. At the cellular level, decreased synaptic inhibition and increased neuronal excitability, which may be related to homeostatic plasticity, could lead to an over-amplification of natural spontaneous activity. At the network level, lateral inhibition could amplify differences in spontaneous activity, and structural changes such as reorganization of tonotopic maps could lead to self-sustained activity in recurrently connected neurons. However, it is difficult to disentangle the contributions of different mechanisms in experiments, especially since not all changes observed in animal models of tinnitus are necessarily related to tinnitus. Computational modeling presents an opportunity of evaluating these mechanisms and their relation to tinnitus. Here we review the computational models for the generation of neurophysiological correlates of tinnitus that have been proposed so far, and evaluate predictions and compare them to available data. We also assess the limits of their explanatory power, thus demonstrating where an understanding is still lacking and where further research may be needed. Identifying appropriate models is important for finding therapies, and we therefore, also summarize the implications of the models for approaches to treat tinnitus.

Keywords: computational model; gain adaptation; hearing loss; homeostatic plasticity; lateral inhibition; tinnitus.

Figures

Figure 1
Figure 1
Schematic illustration of lateral-inhibition models. (A) Depiction of a layer of neurons with lateral inhibition. Neurons are represented by gray circles, lateral inhibitory connections by gray lines (only the inhibitory projections from the central neuron to its neighbors are shown), and excitatory afferents by black lines. (B) Hypothetical auditory activity pattern with a drop toward high frequencies, as it could for example occur in the spontaneous activity of the auditory nerve after noise-induced hearing loss. (C) Activity pattern in the lateral-inhibition network driven by the input shown in (B). An activity peak is generated at the edge of the input pattern but below the region of hearing loss.
Figure 2
Figure 2
Schematic illustration of homeostatic plasticity models. The “knobs” represent the effective response gain of neurons in the central auditory system, determined by the strength of excitatory and inhibitory synapses as well as intrinsic neuronal excitability. (A) Before homeostatic plasticity: noise-induced hearing loss (example audiogram in the top panel) has reduced mean and spontaneous activity in the central auditory system (bottom panels). (B) After homeostatic plasticity: the response gain has been increased to restore the mean activity of central auditory neurons back to its target level. However, spontaneous activity is amplified through the increased gain, giving rise to increased spontaneous firing rates in the region of hearing loss.

References

    1. Aazh H., El Refaie A., Humphriss R. (2011). Gabapentin for tinnitus: a systematic review. Am. J. Audiol. 20, 151–158. 10.1044/1059-0889(2011/10-0041)
    1. Barnea G., Attias J., Gold S., Shahar A. (1990). Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses. Audiology 29, 36–45.
    1. Benda J., Herz A. V. (2003). A universal model for spike-frequency adaptation. Neural Comput. 15, 2523–2564. 10.1162/089976603322385063
    1. Brozoski T. J., Bauer C. A., Caspary D. M. (2002). Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J. Neurosci. 22, 2383–2390.
    1. Bruce I. C., Bajaj H. S., Ko J. (2003). “Lateral-inhibitory-network models of tinnitus,” in 5th IFAC Symposium on Modelling and Control in Biomedical Systems. (Melbourne, Australia: ). 10.1016/j.cmpb.2007.11.001
    1. Caspary D. M., Schatteman T. A., Hughes L. F. (2005). Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J. Neurosci. 25, 10952–10959. 10.1523/JNEUROSCI.2451-05.2005
    1. Chrostowski M., Yang L., Wilson H. R., Bruce I. C., Becker S. (2011). Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation? J. Comput. Neurosci. 30, 279–299. 10.1007/s10827-010-0256-1
    1. Dallos P., Harris D. (1978). Properties of auditory nerve responses in absence of outer hair cells. J. Neurophysiol. 41, 365–383.
    1. de la Rocha J., Marchetti C., Schiff M., Reyes A. D. (2008). Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition. J. Neurosci. 28, 9151–9163. 10.1523/JNEUROSCI.1789-08.2008
    1. Dean I., Harper N. S., McAlpine D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nat. Neurosci. 8, 1684–1689. 10.1038/nn1541
    1. Dean I., Robinson B. L., Harper N. S., McAlpine D. (2008). Rapid neural adaptation to sound level statistics. J. Neurosci. 28, 6430–6438. 10.1523/JNEUROSCI.0470-08.2008
    1. Desai N. S., Rutherford L. C., Turrigiano G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520. 10.1038/9165
    1. Dominguez M., Becker S., Bruce I., Read H. (2006). A spiking neuron model of cortical correlates of sensorineural hearing loss: spontaneous firing, synchrony, and tinnitus. Neural Comput. 18, 2942–2958. 10.1162/neco.2006.18.12.2942
    1. Dong S., Mulders W. H., Rodger J., Robertson D. (2009). Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience 159, 1164–1174. 10.1016/j.neuroscience.2009.01.043
    1. Eggermont J. J., Roberts L. E. (2004). The neuroscience of tinnitus. Trends Neurosci. 27, 676–682. 10.1016/j.tins.2004.08.010
    1. Engineer N. D., Riley J. R., Seale J. D., Vrana W. A., Shetake J. A., Sudanagunta S. P., Borland M. S., Kilgard M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature 470, 101–104. 10.1093/cercor/bhr316
    1. Freyer F., Roberts J. A., Becker R., Robinson P. A., Ritter P., Breakspear M. (2011). Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci. 31, 6353–6361. 10.1523/JNEUROSCI.6693-10.2011
    1. Gerken G. M. (1996). Central tinnitus and lateral inhibition: an auditory brainstem model. Hear. Res. 97, 75–83.
    1. Heinz M. G., Young E. D. (2004). Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. J. Neurophysiol. 91, 784–795. 10.1152/jn.00776.2003
    1. Houweling A. R., Bazhenov M., Timofeev I., Steriade M., Sejnowski T. J. (2005). Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15, 834–845. 10.1093/cercor/bhh184
    1. Irvine D. R., Rajan R., McDermott H. J. (2000). Injury-induced reorganization in adult auditory cortex and its perceptual consequences. Hear. Res. 147, 188–199. 10.1016/S0378-5955(00)00131-3
    1. Kaltenbach J. A. (2011). Tinnitus: models and mechanisms. Hear. Res. 276, 52–60. 10.1016/j.heares.2010.12.003
    1. Kaltenbach J. A., Zacharek M. A., Zhang J., Frederick S. (2004). Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci. Lett. 355, 121–125. 10.1016/j.neulet.2003.10.038
    1. Kilman V., van Rossum M. C., Turrigiano G. G. (2002). Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J. Neurosci. 22, 1328–1337.
    1. Komiya H., Eggermont J. J. (2000). Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol. 120, 750–756.
    1. König O., Schaette R., Kempter R., Gross M. (2006). Course of hearing loss and occurrence of tinnitus. Hear. Res. 221, 59–64. 10.1016/j.heares.2006.07.007
    1. Kotak V. C., Fujisawa S., Lee F. A., Karthikeyan O., Aoki C., Sanes D. H. (2005). Hearing loss raises excitability in the auditory cortex. J. Neurosci. 25, 3908–3918. 10.1523/JNEUROSCI.5169-04.2005
    1. Kral A., Majernik V. (1996). On lateral inhibition in the auditory system. Gen. Physiol. Biophys. 15, 109–127.
    1. Kujawa S. G., Liberman M. C. (2009). Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29, 14077–14085. 10.1523/JNEUROSCI.2845-09.2009
    1. Kuokkanen P. T., Wagner H., Ashida G., Carr C. E., Kempter R. (2010). On the origin of the extracellular field potential in the nucleus laminaris of the barn owl (Tyto alba). J. Neurophysiol. 104, 2274–2290. 10.1152/jn.00395.2010
    1. Langner G., Wallhäusser-Franke E. (1999). “Computer simulation of a tinnitus model based on tinnitus activity in the auditory cortex,” in Sixth International Tinnitus Seminar, ed Hazell J. W. P. (Cambridge, UK: The Tinnitus and Hyperacusis Centre; ).
    1. Liberman M. C., Dodds L. W. (1984). Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear. Res. 16, 43–53. 10.1016/0378-5955(84)90024-8
    1. Lorenz I., Muller N., Schlee W., Hartmann T., Weisz N. (2009). Loss of alpha power is related to increased gamma synchronization-A marker of reduced inhibition in tinnitus? Neurosci. Lett. 453, 225–228. 10.1016/j.neulet.2009.02.028
    1. Middleton J. W., Kiritani T., Pedersen C., Turner J. G., Shepherd G. M., Tzounopoulos T. (2011). Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc. Natl. Acad. Sci. U.S.A. 108, 7601–7606. 10.1073/pnas.1100223108
    1. Moore B. C., Vinay S. (2010). The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus. Hear. Res. 261, 51–56. 10.1016/j.heares.2010.01.003
    1. Mühlnickel W., Elbert T., Taub E., Flor H. (1998). Reorganization of auditory cortex in tinnitus. Proc. Natl. Acad. Sci. U.S.A. 95, 10340–10343. 10.1073/pnas.95.17.10340
    1. Mulders W. H., Ding D., Salvi R., Robertson D. (2011). Relationship between auditory thresholds, central spontaneous activity, and hair cell loss after acoustic trauma. J. Comp. Neurol. 519, 2637–2647. 10.1002/cne.22644
    1. Muly S. M., Gross J. S., Potashner S. J. (2004). Noise trauma alters D-[3H]aspartate release and AMPA binding in chinchilla cochlear nucleus. J. Neurosci. Res. 75, 585–596. 10.1002/jnr.20011
    1. Norena A., Micheyl C., Chery-Croze S., Collet L. (2002). Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol. Neurootol. 7, 358–369.
    1. Norena A. J., Eggermont J. J. (2003). Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear. Res. 183, 137–153. 10.1016/S0378-5955(03)00225-9
    1. Oleskevich S., Walmsley B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. J. Physiol. 540, 447–455. 10.1113/jphysiol.2001.013821
    1. Ortmann M., Muller N., Schlee W., Weisz N. (2011). Rapid increases of gamma power in the auditory cortex following noise trauma in humans. Eur. J. Neurosci. 33, 568–575. 10.1111/j.1460-9568.2010.07542.x
    1. Pan T., Tyler R. S., Ji H., Coelho C., Gehringer A. K., Gogel S. A. (2009). The relationship between tinnitus pitch and the audiogram. Int. J. Audiol. 48, 277–294.
    1. Parra L. C., Pearlmutter B. A. (2007). Illusory percepts from auditory adaptation. J. Acoust. Soc. Am. 121, 1632–1641.
    1. Punte A. K., Vermeire K., Hofkens A., De Bodt M., De Ridder D., van de Heyning P. (2011). Cochlear implantation as a durable tinnitus treatment in single-sided deafness. Cochlear Implants Int. 12(Suppl. 1), S26–S29. 10.1179/146701011X13001035752336
    1. Rajan R., Irvine D. R. (1998). Neuronal responses across cortical field A1 in plasticity induced by peripheral auditory organ damage. Audiol. Neurootol. 3, 123–144.
    1. Rannals M. D., Kapur J. (2011). Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABAA receptors. J. Neurosci. 31, 17701–17712. 10.1523/JNEUROSCI.4476-11.2011
    1. Rauschecker J. P. (1999). Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 22, 74–80. 10.1016/S0166-2236(98)01303-4
    1. Rauschecker J. P., Leaver A. M., Muhlau M. (2010). Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66, 819–826. 10.1016/j.neuron.2010.04.032
    1. Roberts L. E., Eggermont J. J., Caspary D. M., Shore S. E., Melcher J. R., Kaltenbach J. A. (2010). Ringing ears: the neuroscience of tinnitus. J. Neurosci. 30, 14972–14979. 10.1523/JNEUROSCI.4028-10.2010
    1. Roberts L. E., Moffat G., Baumann M., Ward L. M., Bosnyak D. J. (2008). Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J. Assoc. Res. Otolaryngol. 9, 417–435. 10.1007/s10162-008-0136-9
    1. Roberts M. T., Trussell L. O. (2010). Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus. J. Neurophysiol. 104, 2462–2473. 10.1152/jn.00312.2010
    1. Sanchez T. G., Medeiros I. R., Levy C. P., Ramalho Jda R., Bento R. F. (2005). Tinnitus in normally hearing patients: clinical aspects and repercussions. Br. J. Otorhinolaryngol. 71, 427–431.
    1. Schaette R., Kempter R. (2006). Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur. J. Neurosci. 23, 3124–3138. 10.1111/j.1460-9568.2006.04774.x
    1. Schaette R., Kempter R. (2008). Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear. Res. 240, 57–72. 10.1016/j.heares.2008.02.006
    1. Schaette R., Kempter R. (2009). Predicting tinnitus pitch from patients' audiograms with a computational model for the development of neuronal hyperactivity. J. Neurophysiol. 101, 3042–3052. 10.1152/jn.91256.2008
    1. Schaette R., König O., Hornig D., Gross M., Kempter R. (2010). Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range. Hear. Res. 269, 95–101. 10.1016/j.heares.2010.06.022
    1. Schaette R., McAlpine D. (2011). Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci. 31, 13452–13457. 10.1523/JNEUROSCI.2156-11.2011
    1. Schaette R., Turtle C., Munro K. J. (2012). Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS One. 10.1371/journal.pone.0035238
    1. Sereda M., Hall D. A., Bosnyak D. J., Edmondson-Jones M., Roberts L. E., Adjamian P., Palmer A. R. (2011). Re-examining the relationship between audiometric profile and tinnitus pitch. Int. J. Audiol. 50, 303–312. 10.3109/14992027.2010.551221
    1. Song S., Abbott L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron 32, 339–350.
    1. Sprauten M., Darrah T. H., Peterson D. R., Campbell M. E., Hannigan R. E., Cvancarova M., Beard C., Haugnes H. S., Fossa S. D., Oldenburg J., Travis L. B. (2011). Impact of long-term serum platinum concentrations on neuro- and ototoxicity in cisplatin-treated survivors of testicular cancer. J. Clin. Oncol. 30, 300–307. 10.1200/JCO.2011.37.4025
    1. Suneja S. K., Benson C. G., Potashner S. J. (1998a). Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp. Neurol. 154, 473–488. 10.1006/exnr.1998.6946
    1. Suneja S. K., Potashner S. J., Benson C. G. (1998b). Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp. Neurol. 151, 273–288. 10.1006/exnr.1998.6812
    1. Trotter M. I., Donaldson I. (2008). Hearing aids and tinnitus therapy: a 25-year experience. J. Laryngol. Otol. 122, 1052–1056. 10.1017/S002221510800203X
    1. Turrigiano G. G. (1999). Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227. 10.1016/S0166-2236(98)01341-1
    1. Turrigiano G. G., Leslie K. R., Desai N. S., Rutherford L. C., Nelson S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896. 10.1038/36103
    1. Vale C., Sanes D. H. (2002). The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur. J. Neurosci. 16, 2394–2404. 10.1046/j.1460-9568.2002.02302.x
    1. Vale C., Juiz J. M., Moore D. R., Sanes D. H. (2004). Unilateral cochlear ablation produces greater loss of inhibition in the contralateral inferior colliculus. Eur. J. Neurosci. 20, 2133–2140. 10.1111/j.1460-9568.2004.03679.x
    1. van de Heyning P., Vermeire K., Diebl M., Nopp P., Anderson I., De Ridder D. (2008). Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann. Otol. Rhinol. Laryngol. 117, 645–652.
    1. van Welie I., van Hooft J. A., Wadman W. J. (2004). Homeostatic scaling of neuronal excitability by synaptic modulation of so-matic hyperpolarization-activated Ih channels. Proc. Natl. Acad. Sci. U.S.A. 101, 5123–5128. 10.1073/pnas.0307711101
    1. Weisz N., Moratti S., Meinzer M., Dohrmann K., Elbert T. (2005). Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2:e153. 10.1371/journal.pmed.0020153
    1. Weisz N., Muller S., Schlee W., Dohrmann K., Hartmann T., Elbert T. (2007). The neural code of auditory phantom perception. J. Neurosci. 27, 1479–1484. 10.1523/JNEUROSCI.3711-06.2007
    1. Wen B., Wang G. I., Dean I., Delgutte B. (2009). Dynamic range adaptation to sound level statistics in the auditory nerve. J. Neurosci. 29, 13797–13808. 10.1523/JNEUROSCI.5610-08.2009
    1. Whiting B., Moiseff A., Rubio M. E. (2009). Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience 163, 1264–1276. 10.1016/j.neuroscience.2009.07.049
    1. Yang S., Weiner B. D., Zhang L. S., Cho S. J., Bao S. (2011). Homeostatic plasticity drives tinnitus perception in an animal model. Proc. Natl. Acad. Sci. U.S.A. 108, 14974–14979. 10.1073/pnas.1107998108
    1. Young J. M., Waleszczyk W. J., Wang C., Calford M. B., Dreher B., Obermayer K. (2007). Cortical reorganization consistent with spike timing-but not correlation-dependent plasticity. Nat. Neurosci. 10, 887–895. 10.1038/nn1913

Source: PubMed

3
Tilaa