Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer

Ginette S Santiago-Sánchez, Valentina Pita-Grisanti, Blanca Quiñones-Díaz, Kristyn Gumpper, Zobeida Cruz-Monserrate, Pablo E Vivas-Mejía, Ginette S Santiago-Sánchez, Valentina Pita-Grisanti, Blanca Quiñones-Díaz, Kristyn Gumpper, Zobeida Cruz-Monserrate, Pablo E Vivas-Mejía

Abstract

Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.

Keywords: LCN2-MMP-9; NGAL; cancer; lipocalin 2; oncogene; siderophore.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
LCN2 differential RNA expression in normal and tumor tissue. The Cancer Genome Atlas (TCGA) RNA-Seq datasets from healthy and tumor tissue. BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical carcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: esophageal carcinoma; HNSC: head and neck squamous cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian serous cystadenocarcinoma; PDAC: pancreatic ductal adenocarcinoma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; THYM: thymic carcinoma; UCEC: uterine corpus endometrial carcinoma; UCS: uterine carcinoma.
Figure 2
Figure 2
Intracellular iron regulation by LCN2 in tumor cells. Cytokines (IL-17, IL-1β, and TNF-α) secreted by immune cells in the tumor microenvironment (TME) induce activation and binding of transcription factors (TFs) NF-κB, AP-1, PU.1, GATA-1, or C/EBPβ to the LCN2 promoter region. Transcription and secretion of LCN2 is stimulated. LCN2 in the cytoplasmic space binds to iron-loaded catecholate and re-enters tumor cells as an LCN2-catecholate-Fe3+ complex through the LCN2 receptor (LCN2R) expressed in tumor cells. Increased intracellular iron protects tumor cells from ROS-induced damage and from apoptosis, and it provides resistance to hypoxic conditions.

References

    1. Chakraborty S., Kaur S., Guha S., Batra S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta. 2012;1826:129–169. doi: 10.1016/j.bbcan.2012.03.008.
    1. Triebel S., Blaser J., Reinke H., Tschesche H. A 25 kDa alpha 2-Microglobulin-Related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett. 1992;314:386–388. doi: 10.1016/0014-5793(92)81511-J.
    1. Goldberg G.I., Strongin A., Collier I.E., Genrich L.T., Marmer B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 1992;267:4583–4591.
    1. Axelsson L., Bergenfeldt M., Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin. Scand. J. Clin. Lab. Investig. 1995;55:577–588. doi: 10.3109/00365519509110257.
    1. Kjeldsen L., Johnsen A.H., Sengelov H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993;268:10425–10432.
    1. Flower D.R., North A.C., Sansom C.E. The lipocalin protein family: Structural and sequence overview. Biochim. Biophys. Acta. 2000;1482:9–24. doi: 10.1016/S0167-4838(00)00148-5.
    1. Goetz D.H., Holmes M.A., Borregaard N., Bluhm M.E., Raymond K.N., Strong R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-Mediated iron acquisition. Mol. Cell. 2002;10:1033–1043. doi: 10.1016/S1097-2765(02)00708-6.
    1. Kramer J., Ozkaya O., Kummerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020;18:152–163. doi: 10.1038/s41579-019-0284-4.
    1. Holmes M.A., Paulsene W., Jide X., Ratledge C., Strong R.K. Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure. 2005;13:29–41. doi: 10.1016/j.str.2004.10.009.
    1. Bao G., Clifton M., Hoette T.M., Mori K., Deng S.X., Qiu A., Viltard M., Williams D., Paragas N., Leete T., et al. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 2010;6:602–609. doi: 10.1038/nchembio.402.
    1. Coles M., Diercks T., Muehlenweg B., Bartsch S., Zolzer V., Tschesche H., Kessler H. The solution structure and dynamics of human neutrophil gelatinase-associated lipocalin. J. Mol. Biol. 1999;289:139–157. doi: 10.1006/jmbi.1999.2755.
    1. Bao G.H., Ho C.T., Barasch J. The Ligands of Neutrophil Gelatinase-Associated Lipocalin. RSC Adv. 2015;5:104363–104374. doi: 10.1039/C5RA18736B.
    1. Devireddy L.R., Gazin C., Zhu X., Green M.R. A cell-Surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–1305. doi: 10.1016/j.cell.2005.10.027.
    1. Liu Z., Reba S., Chen W.D., Porwal S.K., Boom W.H., Petersen R.B., Rojas R., Viswanathan R., Devireddy L. Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J. Exp. Med. 2014;211:1197–1213. doi: 10.1084/jem.20132629.
    1. Devireddy L.R., Hart D.O., Goetz D.H., Green M.R. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141:1006–1017. doi: 10.1016/j.cell.2010.04.040.
    1. Yang J., Goetz D., Li J.Y., Wang W., Mori K., Setlik D., Du T., Erdjument-Bromage H., Tempst P., Strong R., et al. An iron delivery pathway mediated by a lipocalin. Mol. Cell. 2002;10:1045–1056. doi: 10.1016/S1097-2765(02)00710-4.
    1. Wang Y. Small lipid-Binding proteins in regulating endothelial and vascular functions: Focusing on adipocyte fatty acid binding protein and lipocalin-2. Br. J. Pharmacol. 2012;165:603–621. doi: 10.1111/j.1476-5381.2011.01528.x.
    1. Deis J.A., Guo H., Wu Y., Liu C., Bernlohr D.A., Chen X. Lipocalin 2 regulates retinoic acid-induced activation of beige adipocytes. J. Mol. Endocrinol. 2018;61:115–126. doi: 10.1530/JME-18-0017.
    1. Law I.K., Xu A., Lam K.S., Berger T., Mak T.W., Vanhoutte P.M., Liu J.T., Sweeney G., Zhou M., Yang B., et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes. 2010;59:872–882. doi: 10.2337/db09-1541.
    1. Nam Y., Kim J.H., Seo M., Kim J.H., Jin M., Jeon S., Seo J.W., Lee W.H., Bing S.J., Jee Y., et al. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: The pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J. Biol. Chem. 2014;289:16773–16789. doi: 10.1074/jbc.M113.542282.
    1. Costa D., Principi E., Lazzarini E., Descalzi F., Cancedda R., Castagnola P., Tavella S. LCN2 overexpression in bone enhances the hematopoietic compartment via modulation of the bone marrow microenvironment. J. Cell. Physiol. 2017;232:3077–3087. doi: 10.1002/jcp.25755.
    1. Moschen A.R., Adolph T.E., Gerner R.R., Wieser V., Tilg H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol. Metab. 2017;28:388–397. doi: 10.1016/j.tem.2017.01.003.
    1. Singh R.G., Nguyen N.N., Cervantes A., Kim J.U., Stuart C.E., Petrov M.S. Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver. Peptides. 2019;119:170117. doi: 10.1016/j.peptides.2019.170117.
    1. Rebalka I.A., Monaco C.M.F., Varah N.E., Berger T., D’Souza D.M., Zhou S., Mak T.W., Hawke T.J. Loss of the adipokine lipocalin-2 impairs satellite cell activation and skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 2018;315:C714–C721. doi: 10.1152/ajpcell.00195.2017.
    1. Friedl A., Stoesz S.P., Buckley P., Gould M.N. Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem. J. 1999;31:433–441. doi: 10.1023/A:1003708808934.
    1. Yang J., Bielenberg D.R., Rodig S.J., Doiron R., Clifton M.C., Kung A.L., Strong R.K., Zurakowski D., Moses M.A. Lipocalin 2 promotes breast cancer progression. Proc. Natl. Acad. Sci. USA. 2009;106:3913–3918. doi: 10.1073/pnas.0810617106.
    1. Gomez-Chou S.B., Swidnicka-Siergiejko A.K., Badi N., Chavez-Tomar M., Lesinski G.B., Bekaii-Saab T., Farren M.R., Mace T.A., Schmidt C., Liu Y., et al. Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res. 2017;77:2647–2660. doi: 10.1158/0008-5472.CAN-16-1986.
    1. Mannelqvist M., Stefansson I.M., Wik E., Kusonmano K., Raeder M.B., Oyan A.M., Kalland K.H., Moses M.A., Salvesen H.B., Akslen L.A. Lipocalin 2 expression is associated with aggressive features of endometrial cancer. BMC Cancer. 2012;12:169. doi: 10.1186/1471-2407-12-169.
    1. Nielsen B.S., Borregaard N., Bundgaard J.R., Timshel S., Sehested M., Kjeldsen L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut. 1996;38:414–420. doi: 10.1136/gut.38.3.414.
    1. Furutani M., Arii S., Mizumoto M., Kato M., Imamura M. Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett. 1998;122:209–214. doi: 10.1016/S0304-3835(97)00391-1.
    1. Stoesz S.P., Friedl A., Haag J.D., Lindstrom M.J., Clark G.M., Gould M.N. Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int. J. Cancer. 1998;79:565–572. doi: 10.1002/(SICI)1097-0215(19981218)79:6<565::AID-IJC3>;2-F.
    1. Iacobuzio-Donahue C.A., Ashfaq R., Maitra A., Adsay N.V., Shen-Ong G.L., Berg K., Hollingsworth M.A., Cameron J.L., Yeo C.J., Kern S.E., et al. Highly expressed genes in pancreatic ductal adenocarcinomas: A comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res. 2003;63:8614–8622.
    1. Iannetti A., Pacifico F., Acquaviva R., Lavorgna A., Crescenzi E., Vascotto C., Tell G., Salzano A.M., Scaloni A., Vuttariello E., et al. The neutrophil gelatinase-associated lipocalin (NGAL), a NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc. Natl. Acad. Sci. USA. 2008;105:14058–14063. doi: 10.1073/pnas.0710846105.
    1. Nuntagowat C., Leelawat K., Tohtong R. NGAL knockdown by siRNA in human cholangiocarcinoma cells suppressed invasion by reducing NGAL/MMP-9 complex formation. Clin. Exp. Metastasis. 2010;27:295–305. doi: 10.1007/s10585-010-9327-y.
    1. Srdelic Mihalj S., Kuzmic-Prusac I., Zekic-Tomas S., Samija-Projic I., Capkun V. Lipocalin-2 and matrix metalloproteinase-9 expression in high-grade endometrial cancer and their prognostic value. Histopathology. 2015;67:206–215. doi: 10.1111/his.12633.
    1. Bauer M., Eickhoff J.C., Gould M.N., Mundhenke C., Maass N., Friedl A. Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res. Treat. 2008;108:389–397. doi: 10.1007/s10549-007-9619-3.
    1. Missiaglia E., Blaveri E., Terris B., Wang Y.H., Costello E., Neoptolemos J.P., Crnogorac-Jurcevic T., Lemoine N.R. Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int. J. Cancer. 2004;112:100–112. doi: 10.1002/ijc.20376.
    1. Moniaux N., Chakraborty S., Yalniz M., Gonzalez J., Shostrom V.K., Standop J., Lele S.M., Ouellette M., Pour P.M., Sasson A.R., et al. Early diagnosis of pancreatic cancer: Neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br. J. Cancer. 2008;98:1540–1547. doi: 10.1038/sj.bjc.6604329.
    1. Tang Z., Li C., Kang B., Gao G., Li C., Zhang Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi: 10.1093/nar/gkx247.
    1. Chiang K.C., Yeh T.S., Wu R.C., Pang J.S., Cheng C.T., Wang S.Y., Juang H.H., Yeh C.N. Lipocalin 2 (LCN2) is a promising target for cholangiocarcinoma treatment and bile LCN2 level is a potential cholangiocarcinoma diagnostic marker. Sci. Rep. 2016;6:36138. doi: 10.1038/srep36138.
    1. Gumpper K., Dangel A.W., Pita-Grisanti V., Krishna S.G., Lara L.F., Mace T., Papachristou G.I., Conwell D.L., Hart P.A., Cruz-Monserrate Z. Lipocalin-2 expression and function in pancreatic diseases. Pancreatology. 2020;20:419–424. doi: 10.1016/j.pan.2020.01.002.
    1. Kubben F.J., Sier C.F., Hawinkels L.J., Tschesche H., van Duijn W., Zuidwijk K., van der Reijden J.J., Hanemaaijer R., Griffioen G., Lamers C.B., et al. Clinical evidence for a protective role of lipocalin-2 against MMP-9 autodegradation and the impact for gastric cancer. Eur. J. Cancer. 2007;43:1869–1876. doi: 10.1016/j.ejca.2007.05.013.
    1. Fernandez C.A., Yan L., Louis G., Yang J., Kutok J.L., Moses M.A. The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin. Cancer Res. 2005;11:5390–5395. doi: 10.1158/1078-0432.CCR-04-2391.
    1. Lee H.J., Lee E.K., Lee K.J., Hong S.W., Yoon Y., Kim J.S. Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells. Int. J. Cancer. 2006;118:2490–2497. doi: 10.1002/ijc.21657.
    1. Maier H.T., Aigner F., Trenkwalder B., Zitt M., Vallant N., Perathoner A., Margreiter C., Moser P., Pratschke J., Amberger A. Up-Regulation of neutrophil gelatinase-Associated lipocalin in colorectal cancer predicts poor patient survival. World J. Surg. 2014;38:2160–2167. doi: 10.1007/s00268-014-2499-x.
    1. Miyamoto T., Asaka R., Suzuki A., Takatsu A., Kashima H., Shiozawa T. Immunohistochemical detection of a specific receptor for lipocalin2 (solute carrier family 22 member 17, SLC22A17) and its prognostic significance in endometrial carcinoma. Exp. Mol. Pathol. 2011;91:563–568. doi: 10.1016/j.yexmp.2011.06.002.
    1. Miyamoto T., Kashima H., Yamada Y., Kobara H., Asaka R., Ando H., Higuchi S., Ida K., Mvunta D.H., Shiozawa T. Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells. PLoS ONE. 2016;11:e0155220. doi: 10.1371/journal.pone.0155220.
    1. Shiiba M., Saito K., Fushimi K., Ishigami T., Shinozuka K., Nakashima D., Kouzu Y., Koike H., Kasamatsu A., Sakamoto Y., et al. Lipocalin-2 is associated with radioresistance in oral cancer and lung cancer cells. Int. J. Oncol. 2013;42:1197–1204. doi: 10.3892/ijo.2013.1815.
    1. Monisha J., Roy N.K., Padmavathi G., Banik K., Bordoloi D., Khwairakpam A.D., Arfuso F., Chinnathambi A., Alahmadi T.A., Alharbi S.A., et al. NGAL is Downregulated in Oral Squamous Cell Carcinoma and Leads to Increased Survival, Proliferation, Migration and Chemoresistance. Cancers (Basel) 2018;10:228. doi: 10.3390/cancers10070228.
    1. Tong Z., Kunnumakkara A.B., Wang H., Matsuo Y., Diagaradjane P., Harikumar K.B., Ramachandran V., Sung B., Chakraborty A., Bresalier R.S., et al. Neutrophil gelatinase-associated lipocalin: A novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68:6100–6108. doi: 10.1158/0008-5472.CAN-08-0540.
    1. Leung L., Radulovich N., Zhu C.Q., Organ S., Bandarchi B., Pintilie M., To C., Panchal D., Tsao M.S. Lipocalin2 promotes invasion, tumorigenicity and gemcitabine resistance in pancreatic ductal adenocarcinoma. PLoS ONE. 2012;7:e46677. doi: 10.1371/journal.pone.0046677.
    1. Kaur S., Baine M.J., Guha S., Ochi N., Chakraborty S., Mallya K., Thomas C., Crook J., Wallace M.B., Woodward T.A., et al. Neutrophil gelatinase-associated lipocalin, macrophage inhibitory cytokine 1, and carbohydrate antigen 19-9 in pancreatic juice: Pathobiologic implications in diagnosing benign and malignant disease of the pancreas. Pancreas. 2013;42:494–501. doi: 10.1097/MPA.0b013e31826a8597.
    1. Kaur S., Chakraborty S., Baine M.J., Mallya K., Smith L.M., Sasson A., Brand R., Guha S., Jain M., Wittel U., et al. Potentials of plasma NGAL and MIC-1 as biomarker(s) in the diagnosis of lethal pancreatic cancer. PLoS ONE. 2013;8:e55171. doi: 10.1371/journal.pone.0055171.
    1. Tung M.C., Hsieh S.C., Yang S.F., Cheng C.W., Tsai R.T., Wang S.C., Huang M.H., Hsieh Y.H. Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells. Prostate. 2013;73:1281–1290. doi: 10.1002/pros.22670.
    1. Celestino R., Nome T., Pestana A., Hoff A.M., Goncalves A.P., Pereira L., Cavadas B., Eloy C., Bjoro T., Sobrinho-Simoes M., et al. CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer. 2018;18:68. doi: 10.1186/s12885-017-3948-3.
    1. Yang J., McNeish B., Butterfield C., Moses M.A. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J. 2013;27:45–50. doi: 10.1096/fj.12-211730.
    1. Schmidt-Ott K.M., Mori K., Li J.Y., Kalandadze A., Cohen D.J., Devarajan P., Barasch J. Dual action of neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 2007;18:407–413. doi: 10.1681/ASN.2006080882.
    1. Chaffer C.L., San Juan B.P., Lim E., Weinberg R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016;35:645–654. doi: 10.1007/s10555-016-9648-7.
    1. Shi H., Gu Y., Yang J., Xu L., Mi W., Yu W. Lipocalin 2 promotes lung metastasis of murine breast cancer cells. J. Exp. Clin. Cancer Res. 2008;27:83. doi: 10.1186/1756-9966-27-83.
    1. Leng X., Ding T., Lin H., Wang Y., Hu L., Hu J., Feig B., Zhang W., Pusztai L., Symmans W.F., et al. Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res. 2009;69:8579–8584. doi: 10.1158/0008-5472.CAN-09-1934.
    1. Leng X., Wu Y., Arlinghaus R.B. Relationships of lipocalin 2 with breast tumorigenesis and metastasis. J. Cell. Physiol. 2011;226:309–314. doi: 10.1002/jcp.22403.
    1. Roudkenar M.H., Kuwahara Y., Baba T., Roushandeh A.M., Ebishima S., Abe S., Ohkubo Y., Fukumoto M. Oxidative stress induced lipocalin 2 gene expression: Addressing its expression under the harmful conditions. J. Radiat. Res. 2007;48:39–44. doi: 10.1269/jrr.06057.
    1. Roudkenar M.H., Halabian R., Ghasemipour Z., Roushandeh A.M., Rouhbakhsh M., Nekogoftar M., Kuwahara Y., Fukumoto M., Shokrgozar M.A. Neutrophil gelatinase-associated lipocalin acts as a protective factor against H(2)O(2) toxicity. Arch. Med. Res. 2008;39:560–566. doi: 10.1016/j.arcmed.2008.05.003.
    1. Karlsen J.R., Borregaard N., Cowland J.B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-alpha is controlled by IkappaB-zeta but neither by C/EBP-beta nor C/EBP-delta. J. Biol. Chem. 2010;285:14088–14100. doi: 10.1074/jbc.M109.017129.
    1. Cowland J.B., Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45:17–23. doi: 10.1006/geno.1997.4896.
    1. Mori K., Lee H.T., Rapoport D., Drexler I.R., Foster K., Yang J., Schmidt-Ott K.M., Chen X., Li J.Y., Weiss S., et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Investig. 2005;115:610–621. doi: 10.1172/JCI23056.
    1. Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995;82–83:969–974. doi: 10.1016/0378-4274(95)03532-X.
    1. Gogada R., Yadav N., Liu J., Tang S., Zhang D., Schneider A., Seshadri A., Sun L., Aldaz C.M., Tang D.G., et al. Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer. J. Biol. Chem. 2013;288:368–381. doi: 10.1074/jbc.M112.386102.
    1. Torti S.V., Torti F.M. Iron and cancer: More ore to be mined. Nat. Rev. Cancer. 2013;13:342–355. doi: 10.1038/nrc3495.
    1. Jung M., Weigert A., Mertens C., Rehwald C., Brune B. Iron Handling in Tumor-Associated Macrophages-Is There a New Role for Lipocalin-2? Front. Immunol. 2017;8:1171. doi: 10.3389/fimmu.2017.01171.
    1. Candido S., Abrams S.L., Steelman L.S., Lertpiriyapong K., Fitzgerald T.L., Martelli A.M., Cocco L., Montalto G., Cervello M., Polesel J., et al. Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. Biochim. Biophys. Acta. 2016;1863:438–448. doi: 10.1016/j.bbamcr.2015.08.010.
    1. Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 2015;3:83–92. doi: 10.2147/HP.S93413.
    1. Bebber C., Müller F., Clemente L.P., Weber J., von Karstedt S. Ferroptosis in Cancer Cell Biology. Cancers (Basel) 2020;12:164. doi: 10.3390/cancers12010164.
    1. Bahmani P., Halabian R., Rouhbakhsh M., Roushandeh A.M., Masroori N., Ebrahimi M., Samadikuchaksaraei A., Shokrgozar M.A., Roudkenar M.H. Neutrophil gelatinase-associated lipocalin induces the expression of heme oxygenase-1 and superoxide dismutase 1, 2. Cell Stress Chaperones. 2010;15:395–403. doi: 10.1007/s12192-009-0154-5.
    1. Hiromoto T., Noguchi K., Yamamura M., Zushi Y., Segawa E., Takaoka K., Moridera K., Kishimoto H., Urade M. Up-regulation of neutrophil gelatinase-associated lipocalin in oral squamous cell carcinoma: Relation to cell differentiation. Oncol. Rep. 2011;26:1415–1421. doi: 10.3892/or.2011.1429.
    1. Volpe V., Raia Z., Sanguigno L., Somma D., Mastrovito P., Moscato F., Mellone S., Leonardi A., Pacifico F. NGAL controls the metastatic potential of anaplastic thyroid carcinoma cells. J. Clin. Endocrinol. Metab. 2013;98:228–235. doi: 10.1210/jc.2012-2528.
    1. Yan L., Borregaard N., Kjeldsen L., Moses M.A. The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J. Biol. Chem. 2001;276:37258–37265. doi: 10.1074/jbc.M106089200.
    1. Roy R., Louis G., Loughlin K.R., Wiederschain D., Kilroy S.M., Lamb C.C., Zurakowski D., Moses M.A. Tumor-specific urinary matrix metalloproteinase fingerprinting: Identification of high molecular weight urinary matrix metalloproteinase species. Clin. Cancer Res. 2008;14:6610–6617. doi: 10.1158/1078-0432.CCR-08-1136.
    1. Wani N., Nasser M.W., Ahirwar D.K., Zhao H., Miao Z., Shilo K., Ganju R.K. C-X-C motif chemokine 12/C-X-C chemokine receptor type 7 signaling regulates breast cancer growth and metastasis by modulating the tumor microenvironment. Breast Cancer Res. 2014;16:R54. doi: 10.1186/bcr3665.
    1. Oren B., Urosevic J., Mertens C., Mora J., Guiu M., Gomis R.R., Weigert A., Schmid T., Grein S., Brune B., et al. Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis. J. Pathol. 2016;239:274–285. doi: 10.1002/path.4724.
    1. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 2010;141:52–67. doi: 10.1016/j.cell.2010.03.015.
    1. Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002;2:161–174. doi: 10.1038/nrc745.
    1. Tschesche H., Zolzer V., Triebel S., Bartsch S. The human neutrophil lipocalin supports the allosteric activation of matrix metalloproteinases. Eur. J. Biochem. 2001;268:1918–1928. doi: 10.1046/j.1432-1327.2001.02066.x.
    1. Lee E.K., Kim H.J., Lee K.J., Lee H.J., Lee J.S., Kim D.G., Hong S.W., Yoon Y., Kim J.S. Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/Akt signaling. Int. J. Oncol. 2011;38:325–333. doi: 10.3892/ijo.2010.854.
    1. Guo P., Yang J., Huang J., Auguste D.T., Moses M.A. Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel. Proc. Natl. Acad. Sci. USA. 2019;116:18295–18303. doi: 10.1073/pnas.1904697116.
    1. Guo P., Huang J., Wang L., Jia D., Yang J., Dillon D.A., Zurakowski D., Mao H., Moses M.A., Auguste D.T. ICAM-1 as a molecular target for triple negative breast cancer. Proc. Natl. Acad. Sci. USA. 2014;111:14710–14715. doi: 10.1073/pnas.1408556111.
    1. Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003.
    1. Guo P., You J.O., Yang J., Jia D., Moses M.A., Auguste D.T. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-Triggered siRNA delivery and chemokine axis blockade. Mol. Pharm. 2014;11:755–765. doi: 10.1021/mp4004699.
    1. Guo P., Yang J., Jia D., Moses M.A., Auguste D.T. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer. Theranostics. 2016;6:1–13. doi: 10.7150/thno.12167.
    1. Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236.
    1. Torti S.V., Manz D.H., Paul B.T., Blanchette-Farra N., Torti F.M. Iron and Cancer. Annu. Rev. Nutr. 2018;38:97–125. doi: 10.1146/annurev-nutr-082117-051732.
    1. Cameron E., Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Reevaluation of prolongation of survival times in terminal human cancer. Proc. Natl. Acad. Sci. USA. 1978;75:4538–4542. doi: 10.1073/pnas.75.9.4538.
    1. Mondal S., Adhikari N., Banerjee S., Amin S.A., Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020;194:112260. doi: 10.1016/j.ejmech.2020.112260.
    1. Marshall D.C., Lyman S.K., McCauley S., Kovalenko M., Spangler R., Liu C., Lee M., O’Sullivan C., Barry-Hamilton V., Ghermazien H., et al. Selective Allosteric Inhibition of MMP9 Is Efficacious in Preclinical Models of Ulcerative Colitis and Colorectal Cancer. PLoS ONE. 2015;10:e0127063. doi: 10.1371/journal.pone.0127063.

Source: PubMed

3
Tilaa