Totally Implantable Bidirectional Neural Prostheses: A Flexible Platform for Innovation in Neuromodulation

Philip A Starr, Philip A Starr

Abstract

Implantable neural prostheses are in widespread use for treating a variety of brain disorders. Until recently, most implantable brain devices have been unidirectional, either delivering neurostimulation without brain sensing, or sensing brain activity to drive external effectors without a stimulation component. Further, many neural interfaces that incorporate a sensing function have relied on hardwired connections, such that subjects are tethered to external computers and cannot move freely. A new generation of neural prostheses has become available, that are both bidirectional (stimulate as well as record brain activity) and totally implantable (no externalized connections). These devices provide an opportunity for discovering the circuit basis for neuropsychiatric disorders, and to prototype personalized neuromodulation therapies that selectively interrupt neural activity underlying specific signs and symptoms.

Keywords: bidirectional interface; brain sensing; brain-computer interface; deep brain stimulation; electrocorticography; local field potential; neural prostheses; oscillatory brain activity.

Figures

Figure 1
Figure 1
Illustration of a totally implanted bidirectional neural interface designed for chronic multisite recording in humans, as well as therapeutic neurostimulation. Quadripolar electrode arrays are implanted in the subthalamic nucleus and over motor cortex (enlarged view in inset), and attached to Activa PC+S (Medtronic Inc.) implanted over the pectoralis muscle. Data are non-invasively downloaded to an external tablet computer by radiotelemetry. The device is used to characterize networks related to abnormal movement in Parkinson's disease (Swann et al., 2016) and to prototype control algorithms for closed loop stimulation (Swann et al., 2018). This art, by UCSF medical illustrator Ken Probst, is also published in Swann et al. (Swann et al., 2017), with permission.

References

    1. Aghajan M., Schuette P., Fields T. A., Tran M. E., Siddiqui S. M., Hasulak N. R., et al. (2017). Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Curr. Biol. 27, 3743.e3–51.e3. 10.1016/j.cub.2017.10.062
    1. Almeida L., Deeb W., Spears C., Opri E., Molina R., Martinez-Ramirez D., et al. . (2017). Current practice and the future of deep brain stimulation therapy in Parkinson's disease. Semin. Neurol. 37, 205–214. 10.1055/s-0037-1601893
    1. Crone N. E., Miglioretti D. L., Gordon B., Lesser R. P. (1998). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121 (Pt 12), 2301–2315. 10.1093/brain/121.12.2301
    1. Deeb W., Giordano J. J., Rossi P. J., Mogilner A. Y., Gunduz A., Judy J. W., et al. . (2016). Proceedings of the fourth annual deep brain stimulation think tank: a review of emerging issues and technologies. Front. Integr. Neurosci. 10:38. 10.3389/fnint.2016.00038
    1. Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480. 10.1016/j.tics.2005.08.011
    1. Herron J. A., Thompson M. C., Brown T., Chizeck H. J., Ojemann J. G., Ko A. L. (2017). Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 127, 580–587. 10.3171/2016.8.JNS16536
    1. Khanna P., Swann N. C., de Hemptinne C., Miocinovic S., Miller A., Starr P. A., et al. . (2017). Neurofeedback control in parkinsonian patients using electrocorticography signals accessed wirelessly with a chronic, fully implanted device. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1715–1724. 10.1109/TNSRE.2016.2597243
    1. Langevin J. P., Koek R. J., Schwartz H. N., Chen J. W. Y., Sultzer D. L., Mandelkern M. A., et al. . (2016). Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder. Biol. Psychiatry 79, e82–e84. 10.1016/j.biopsych.2015.09.003
    1. Manning J. R., Jacobs J., Fried I., Kahana M. J. (2009). Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620. 10.1523/JNEUROSCI.2041-09.2009
    1. Meidahl A. C., Tinkhauser G., Herz D. M., Cagnan H., Debarros J., Brown P. (2017). Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy. Mov. Disord. 32, 810–819. 10.1002/mds.27022
    1. Molina R., Okun M. S., Shute J. B., Opri E., Rossi P. J., Martinez-Ramirez D., et al. . (2017). Report of a patient undergoing chronic responsive deep brain stimulation for Tourette syndrome: proof of concept. J. Neurosurg. 129, 308–314. 10.3171/2017.6.JNS17626
    1. Morrell M. J. (2011). Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77, 1295–1304. 10.1212/WNL.0b013e3182302056
    1. Neumann W. J., Horn A., Ewert S., Huebl J., Brucke C., Slentz C., et al. . (2017a). A localized pallidal physiomarker in cervical dystonia. Ann. Neurol. 82, 912–924. 10.1002/ana.25095
    1. Neumann W. J., Huebl J., Brucke C., Gabriels L., Bajbouj M., Merkl A., et al. . (2014). Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol. Psychiatry 19, 1186–1192. 10.1038/mp.2014.2
    1. Neumann W. J., Staub-Bartelt F., Horn A., Schanda J., Schneider G. H., Brown P., et al. . (2017b). Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson's disease. Clin. Neurophysiol. 128, 2286–2291. 10.1016/j.clinph.2017.08.028
    1. Oswal A., Brown P., Litvak V. (2013). Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr. Opin. Neurol. 26, 662–670. 10.1097/WCO.0000000000000034
    1. Rouse A. G., Stanslaski S. R., Cong P., Jensen R. M., Afshar P., Ullestad D., et al. . (2011). A chronic generalized bi-directional brain-machine interface. J. Neural Eng. 8:036018. 10.1088/1741-2560/8/3/036018
    1. Ryapolova-Webb E., Afshar P., Stanslaski S., Denison T., de Hemptinne C., Bankiewicz K., et al. . (2014). Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. J. Neural Eng. 11:016009. 10.1088/1741-2560/11/1/016009
    1. Shute J. B., Okun M. S., Opri E., Molina R., Rossi P. J., Martinez-Ramirez D., et al. . (2016). Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. Neuroimage Clin. 12:165–172. 10.1016/j.nicl.2016.06.015
    1. Sun F. T., Morrell M. J. (2014). The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med. Devices 11, 563–572. 10.1586/17434440.2014.947274
    1. Sun F. T., Morrell M. J., Wharen R. E., Jr. (2008). Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5, 68–74. 10.1016/j.nurt.2007.10.069
    1. Swann N. C., de Hemptinne C., Miocinovic S., Qasim S., Ostrem J. L., Galifianakis N. B., et al. . (2017). Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. J. Neurosurg. 128, 605–616. 10.3171/2016.11.JNS161162
    1. Swann N. C., de Hemptinne C., Miocinovic S., Qasim S., Wang S. S., Ziman N., et al. . (2016). Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's disease. J. Neurosci. 36, 6445–6458. 10.1523/JNEUROSCI.1128-16.2016
    1. Swann N. C., de Hemptinne C., Thompson M. C., Miocinovic S., Miller A. M., Gilron R., et al. . (2018). Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. J. Neural Eng. 15:046006. 10.1088/1741-2552/aabc9b
    1. Syrkin-Nikolau J., Koop M. M., Prieto T., Anidi C., Afzal M. F., Velisar A., et al. . (2017). Subthalamic neural entropy is a feature of freezing of gait in freely moving people with Parkinson's disease. Neurobiol. Dis. 108:288–297. 10.1016/j.nbd.2017.09.002
    1. Timmermann L., Gross J., Dirks M., Volkmann J., Freund H. J., Schnitzler A. (2003). The cerebral oscillatory network of parkinsonian resting tremor. Brain 126(Pt 1), 199–212. 10.1093/brain/awg022
    1. Tsu A. P., Burish M. J., GodLove J., Ganguly K. (2015). Cortical neuroprosthetics from a clinical perspective. Neurobiol. Dis. 83:154–160. 10.1016/j.nbd.2015.07.015
    1. Vansteensel M. J., Pels E. G. M., Bleichner M. G., Branco M. P., Denison T., Freudenburg Z. V., et al. . (2016). Fully implanted brain-computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375, 2060–2066. 10.1056/NEJMoa1608085
    1. Voytek B., Knight R. T. (2015). Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol. Psychiatry 77, 1089–1097. 10.1016/j.biopsych.2015.04.016
    1. Widge A. S., Deckersbach T., Eskandar E. N., Dougherty D. D. (2016). Deep brain stimulation for treatment-resistant psychiatric illnesses: what has gone wrong and what should we do next? Biol. Psychiatry 79, e9–e10. 10.1016/j.biopsych.2015.06.005
    1. Wozny T. A., Lipski W. J., Alhourani A., Kondylis E. D., Antony A., Richardson R. M. (2017). Effects of hippocampal low-frequency stimulation in idiopathic non-human primate epilepsy assessed via a remote-sensing-enabled neurostimulator. Exp. Neurol. 294, 68–77. 10.1016/j.expneurol.2017.05.003
    1. Yuste R. (2015). From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497. 10.1038/nrn3962
    1. Zavala B. A., Jang A. I., Zaghloul K. A. (2017). Human subthalamic nucleus activity during non-motor decision making. Elife 6:e31007. 10.7554/eLife.31007

Source: PubMed

3
Tilaa