Products of gut microbial Toll/interleukin-1 receptor domain NADase activities in gnotobiotic mice and Bangladeshi children with malnutrition

James S Weagley, Mark Zaydman, Siddarth Venkatesh, Yo Sasaki, Neha Damaraju, Alex Yenkin, William Buchser, Dmitry A Rodionov, Andrei Osterman, Tahmeed Ahmed, Michael J Barratt, Aaron DiAntonio, Jeffrey Milbrandt, Jeffrey I Gordon, James S Weagley, Mark Zaydman, Siddarth Venkatesh, Yo Sasaki, Neha Damaraju, Alex Yenkin, William Buchser, Dmitry A Rodionov, Andrei Osterman, Tahmeed Ahmed, Michael J Barratt, Aaron DiAntonio, Jeffrey Milbrandt, Jeffrey I Gordon

Abstract

Perturbed gut microbiome development has been linked to childhood malnutrition. Here, we characterize bacterial Toll/interleukin-1 receptor (TIR) protein domains that metabolize nicotinamide adenine dinucleotide (NAD), a co-enzyme with far-reaching effects on human physiology. A consortium of 26 human gut bacterial strains, representing the diversity of TIRs observed in the microbiome and the NAD hydrolase (NADase) activities of a subset of 152 bacterial TIRs assayed in vitro, was introduced into germ-free mice. Integrating mass spectrometry and microbial RNA sequencing (RNA-seq) with consortium membership manipulation disclosed that a variant of cyclic-ADPR (v-cADPR-x) is a specific product of TIR NADase activity and a prominent, colonization-discriminatory, taxon-specific metabolite. Guided by bioinformatic analyses of biochemically validated TIRs, we find that acute malnutrition is associated with decreased fecal levels of genes encoding TIRs known or predicted to generate v-cADPR-x, as well as decreased levels of the metabolite itself. These results underscore the need to consider microbiome TIR NADases when evaluating NAD metabolism in the human holobiont.

Trial registration: ClinicalTrials.gov NCT01889329.

Keywords: CP: Microbiology; NAD metabolism; TIR domain structure/activity relationships; childhood malnutrition; defined microbial communities; gnotobiotic mice; human gut microbiome development/functional profiling.

Conflict of interest statement

Declaration of interests A.O. and D.A.R. are co-founders of Phenobiome, Inc., a company pursuing development and biomedical applications of computational tools for predictive phenotype profiling of microbial communities. A.D. and J.M. are co-founders of, and Y.S. served as a consultant to, Disarm Therapeutics, a company dedicated to developing therapeutics for neurodegenerative conditions that is now part of Eli Lilly and Company.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
In vitro assays of NADase activities associated with TIR domains (A) Overview of NAD metabolism in humans and bacteria. The predominant pathways catalyzed by bacteria are shown with a solid blue line, while the pathways predominantly utilized by humans are denoted with a solid black line. Reactions that are known, but not widely distributed in bacteria, are indicated with blue dashed lines. (B) Summary of the number of TIR domains assigned to groups defined by Bayesian partitioning with pattern selections (BPPS). The left to right order of BPPS groups is based on the number of TIRs in that group that were identified in 278 fecal microbiome samples obtained from 30 healthy Bangladeshi children and 14 children with acute malnutrition. Subsequent rows indicate the number of TIRs in a given BPPS group that were assayed for NADase activity in vitro after expression in E. coli and the products that they generated from NAD (ADPR, cADPR, v-cADPR-x, or v-cADPR-y). The last row describes the number of TIRs identified in the proteomes of the 26 human gut bacterial strains that were introduced into gnotobiotic mice. (C) Examples of results of HPLC-based assays of NADase activity in recombinant TIRs produced by the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible E. coli expression system. Peaks corresponding to cADPR and its variants are labeled. The inset in the top panel shows production of ADPR and Nam from the purified C. bolteae CLOBOL_01188 protein. (D) Structure of cADPR (Lee et al., 1994). The proposed cyclization sites of its two variant forms, v-cADPR-x and v-cADPR-y, are denoted by dashed lines. (E) MS/MS fragmentation pattern of cADPR, v-cADPR-x, and v-cADPR-y, with the peak area (absorbance units; a.u.) of each fragment normalized to the adenine moiety (m/z 136), which had the largest peak area.
Figure 2
Figure 2
Characterizing the products of NADase-positive TIR domains in the cecal contents of gnotobiotic mice colonized with a 26-member-defined consortium of cultured human gut bacterial taxa and fed NAD precursor-sufficient or deficient diets (A) Design of gnotobiotic mouse experiment. (B–D) Levels of (B) nicotinic acid (NA), (C) NAD, and (D) v-cADPR-x in the cecal contents of germ-free and colonized mice fed the NAD-sufficient or deficient diets. Mean values ± SD are shown. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗∗p < 0.0001 (two-way ANOVA; Tukey’s multiple comparisons test; n = 8 animals/group).
Figure 3
Figure 3
Production of v-cADPR-x in gnotobiotic mice colonized with Bacteroides xylanisolvens and/or Bacteroides thetaiotaomicron (A) Design of gnotobiotic mouse experiment. (B) Absolute abundance of B. xylanisolvens XB1A and B. thetaiotaomicron 7330 in cecal contents as a function of diet and community context. Each dot refers to the abundance of the strain within an individual animal. Mean values ± SD are shown. n = 6 mice per treatment group. ∗p < 0.05; ∗∗∗∗p < 0.0001 (two-way ANOVA; Tukey’s multiple comparisons test). (C) Expression of TIR-domain-encoding genes in B. xylanisolvens XB1A and B. thetaiotaomicron 7330 as a function of diet and community context (n = 6 mice per treatment group). Mean values ± SD are shown. ∗p < 0.05 (DESeq2; Wald test with FDR correction). (D–I) Liquid chromatography-triple quadrupole mass spectrometry (LC-QqQ-MS) of cecal NAD metabolites in germ-free (GF) or mono-colonized animals (D–H) or in animals that had been gavaged with both B. thetaiotaomicron 7330 and B. xylanisolvens XB1A or the entire 26-member consortium (I). Mean values ± SD are shown. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001 (two-way ANOVA; Tukey’s post hoc test for comparison of diet and microbial community [D–H] or one-way ANOVA with Tukey’s post hoc test for comparison of community type in mice fed the NAD precursor deficient diet [I]).
Figure 4
Figure 4
Identification and characterization of v-cADPR-x-producing TIR domains in the fecal microbiomes of healthy Bangladeshi infants and children and those with malnutrition (A) Total number of TIR domains encoded by the fecal microbiomes of healthy Bangladeshi infants and children during the first 3 years of postnatal life. (B) Number of TIR domains identified in the fecal microbiomes of Bangladeshi infants and children (healthy and malnourished) predicted to metabolize NAD to ADPR, cADPR, v-cADPR-x, or v-cADPR-y. (C–F) Violin plots showing the total number of reads, generated from the fecal microbiomes of age-matched infants and children with healthy growth phenotypes or with acute malnutrition (weight-for-length Z score [WLZ] < −2), that mapped to all detected TIR-domain-containing genes (C) and genes encoding TIR domains predicted to produce v-cADPR-x (D), cADPR (E), or ADPR (F). Data are normalized for gene length and sequencing depth (n = 82 healthy and 66 SAM donor samples). ∗p < 0.05; ∗∗ <0.01 (Mann-Whitney U test). (G–I) Levels of v-cADPR-x, nicotinic acid (NA), and NAD were quantified by LC-QqQ-MS of feces collected from members of a healthy birth cohort, or children with acute malnutrition. Violin shape illustrates the distribution of values; the inset box plots indicate median values and interquartile range. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (Mann-Whitney U test; n = 10 samples/group).

References

    1. Adey A., Morrison H.G., Xun X., Kitzman J.O., Turner E.H., Stackhouse B., MacKenzie A.P., Caruccio N.C., Zhang X., Shendure J. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 2010;11:1–17.
    1. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477.
    1. Blacher E., Bashiardes S., Shapiro H., Rothschild D., Mor U., Dori-Bachash M., Kleimeyer C., Moresi C., Harnik Y., Zur M., et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572:474–480.
    1. Blanton L.V., Barratt M.J., Charbonneau M.R., Ahmed T., Gordon J.I. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 2016;352:1533.
    1. Bogan K.L., Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Ann. Rev. Nutr. 2008;28:115–130.
    1. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30:114–2120.
    1. Boshoff H.I., Xu X., Tahlan K., Dowd C.S., Pethe K., Camacho L.R., Park T.H., Yun C.S., Schnappinger D., Ehrt S., et al. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis: an essential role for NAD in nonreplicating bacilli. J. Biol. Chem. 2008;283:19329–19341.
    1. Burroughs A.M., Zhang D., Schäffer D.E., Iyer L.M., Aravind L. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Res. 2015;43:10633–10654.
    1. Burroughs A.M., Aravind L. Identification of uncharacterized components of prokaryotic immune systems and their diverse eukaryotic reformulations. J. Bacteriol. 2020
    1. Bramley J.C., Yenkin A.L., Zaydman M.A., DiAntonio A., Milbrandt J.D., Buchser W.J. Domain-centric database to uncover structure of minimally characterized viral genomes. Sci. Data. 2020;7:1–11.
    1. Brenner C. Evolution of NAD biosynthetic enzymes. Structure. 2005;13:1239–1240.
    1. Bricker A.L., Carey V.J., Wessels M.R. Role of NADase in virulence in experimental invasive group A streptococcal infection. Infect. Immun. 2005;73:6562–6566.
    1. Brown E.M., Arellano-Santoyo H., Temple E.R., Costliow Z.A., Pichaud M., Hall A.B., Liu K., Durney M.A., Gu X., Plichta D.R., et al. Gut microbiome ADP-ribosyltransferases are widespread phage-encoded fitness factors. Cell Host Microbe. 2021;29:1351–1365.
    1. Buchfink B., Reuter K., Drost H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 2021;18:366–368.
    1. Chama M., Amadi B.C., Chandwe K., Zyambo K., Besa E., Shaikh N., Ndao I.M., Tarr P.I., Storer C., Head R., Kelly P. Transcriptomic analysis of enteropathy in Zambian children with severe acute malnutrition. EBioMedicine. 2019;45:456–463.
    1. Chen R.Y., Mostafa I., Hibberd M.C., Das S., Mahfuz M., Naila N.N., Islam M.M., Huq S., Alam M.A., Zaman M.U., et al. A microbiota-directed food intervention for undernourished children. New Engl. J. Med. 2021;384:1517–1528.
    1. Cohen D., Melamed S., Millman A., Shulman G., Oppenheimer-Shaanan Y., Kacen A., Doron S., Amitai G., Sorek R. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature. 2019;574:691–695.
    1. Coronas-Serna J.M., Louche A., Rodríguez-Escudero M., Roussin M., Imbert P.R., Rodríguez-Escudero I., Terradot L., Molina M., Gorvel J.P., Cid V.J., Salcedo S.P. The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 2020;16
    1. Doron S., Melamed S., Ofir G., Leavitt A., Lopatina A., Keren M., Amitai G., Sorek R. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359
    1. Eastman S., Smith T., Zaydman M., Kim P., Martinez S., Damaraju N., DiAntonio A., Milbrandt J., Clemente T., Alfano J., Guo M. A phytobacterial TIR domain effector manipulates NAD+ to promote virulence. New Phytol. 2021;233:890–904.
    1. El-Gebali S., Mistry J., Bateman A., Eddy S.R., Luciani A., Potter S.C., Qureshi M., Richardson L.J., Salazar G.A., Smart A., et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432.
    1. Essuman K., Summers D.W., Sasaki Y., Mao X., DiAntonio A., Milbrandt J. The SARM1 Toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron. 2017;93:1334–1343.
    1. Essuman K., Summers D.W., Sasaki Y., Mao X., Yim A.K.Y., DiAntonio A., Milbrandt J. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr. Biol. 2018;28:421–430.
    1. Feng L., Raman A.S., Hibberd M.C., Cheng J., Griffin N.W., Peng Y., Leyn S.A., Rodionov D.A., Osterman A.L., Gordon J.I. Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proc. Natl. Acad. Sci. U S A. 2020;117:2622–2633.
    1. Fridman C.M., Keppel K., Gerlic M., Bosis E., Salomon D. A comparative genomics methodology reveals a widespread family of membrane disrupting T6SS effectors. Nat. Comm. 2020;11:1–14.
    1. Gao L., Altae-Tran H., Böhning F., Makarova K.S., Segel M., Schmid-Burgk J.L., Koob J., Wolf Y.I., Koonin E.V., Zhang F. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science. 2020;369:1077–1084.
    1. Gazzaniga F., Stebbins R., Chang S.Z., McPeek M.A., Brenner C. Microbial NAD metabolism: lessons from comparative genomics. Micro. Mol. Bio. Rev. 2009;73:529–541.
    1. Gehrig J.L., Venkatesh S., Chang H.W., Hibberd M.C., Kung V.L., Cheng J., Chen R.Y., Subramanian S., Cowardin C.A., Meier M.F., et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 2019;365
    1. Gerdts J., Brace E.J., Sasaki Y., DiAntonio A., Milbrandt J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science. 2015;348:453–457.
    1. Gerner R.R., Klepsch V., Macheiner S., Arnhard K., Adolph T.E., Grander C., Wieser V., Pfister A., Moser P., Hermann-Kleiter N., et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018;67:1813–1823.
    1. Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075.
    1. Hibberd M.C., Wu M., Rodionov D.A., Li X., Cheng J., Griffin N.W., Barratt M.J., Giannone R.J., Hettich R.L., Osterman A.L., Gordon J.I. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci. Transl. Med. 2017;9
    1. Horsefield S., Burdett H., Zhang X., Manik M.K., Shi Y., Chen J., Qi T., Gilley J., Lai J.S., Rank M.X., et al. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science. 2019;365:793–799.
    1. Jones P., Binns D., Chang H.Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A., Nuka G., et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–1240.
    1. Ka D., Oh H., Park E., Kim J.H., Bae E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nat. Comm. 2020;11:1–8.
    1. Katsyuba E., Romani M., Hofer D., Auwerx J. NAD+ homeostasis in health and disease. Nat. Met. 2020;2:9–31.
    1. Kennedy P., Cryan J., Dinan T., Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399–412.
    1. Klein T.A., Pazos M., Surette M.G., Vollmer W., Whitney J.C. Molecular basis for immunity protein recognition of a type VII secretion system exported antibacterial toxin. J. Mol. Biol. 2018;430:4344–4358.
    1. Kosek M.N., Mduma E., Kosek P.S., Lee G.O., Svensen E., Pan W.K., Olortegui M.P., Bream J.H., Patil C., Asayag C.R., et al. Plasma tryptophan and the kynurenine-tryptophan ratio are associated with the acquisition of statural growth deficits and oral vaccine underperformance in populations with environmental enteropathy. Am. J. Trop. Med. Hyg. 2016;95:928–937.
    1. Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359.
    1. Lee H.C., Aarhus R., Levitt D. The crystal structure of cyclic ADP-ribose. Nat. Struct. Biol. 1994;1:143–144.
    1. Lopatina A., Tal N., Sorek R. Abortive infection: bacterial suicide as an antiviral immune strategy. Ann. Rev. Virol. 2020;7:371–384.
    1. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
    1. Magoc T., Salzberg S. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–2963.
    1. Martin M. Cutadapt removes adaptor sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.
    1. McGuire V.A., Arthur J.S.C. Subverting toll-like receptor signaling by bacterial pathogens. Front. Immunol. 2015;6:607.
    1. McNulty N.P., Wu M., Erickson A.R., Pan C., Erickson B.K., Martens E.C., Pudlo N.A., Muegge B.D., Henrissat B., Hettich R.L., Gordon J.I. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013;11
    1. Millman A., Bernheim A., Stokar-Avihail A., Fedorenko T., Voichek M., Leavitt A., Oppenheimer-Shaanan Y., Sorek R. Bacterial retrons function in anti-phage defense. Cell. 2020;183:1551–1561.
    1. Preiss J., Handler P. Biosynthesis of diphosphopyridine nucleotide: I. Identification of intermediates. J. Biol. Chem. 1958;233:488–492.
    1. R Core Team . R Foundation for Statistical Computing; 2020. R: A Language and Environment for Statistical Computing.
    1. Raman A.S., Gehrig J.L., Subramanian S., Venkatesh M.C., Hibberd S., Kang G., Bessong P.O., Lima A.A.M., Kosek M.N., Petri W.A., et al. A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science. 2019;365
    1. Rodionov D.A., Arzamasov A.A., Khoroshkin M.S., Iablokov S.N., Leyn S.A., Peterson S.N., Novichkov P.S., Osterman A.L. Micronutrient requirements and sharing capabilities of the human gut microbiome. Front. Microbiol. 2019;10:1316.
    1. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069.
    1. Shats I., Williams J.G., Liu J., Makarov M.V., Wu X., Lih F.B., Deterding L.J., Lim C., Xu X., Randall T.A., et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 2020;31:564–579.
    1. Sorci L., Blaby I.K., Rodionova I.A., De Ingeniis J., Tkachenko S., de Crécy-Lagard V., Osterman A.L. Quinolinate salvage and insights for targeting NAD biosynthesis in group A Streptococci. J. Bacteriol. 2013;195:726–732.
    1. Stämmler F., Gläsner J., Hiergeist A., Holler E., Weber D., Oefner P.J., Gessner A., Spang R. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome. 2016;4:1–13.
    1. Subramanian S., Huq S., Yatsunenko T., Haque R., Mahfuz M., Alam M.A., Benezra A., DeStefano J., Meier M.F., Muegge B.D., et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–421.
    1. Tak U., Vlach J., Garza-Garcia A., William D., Danilchanka O., de Carvalho L.P.S., Saad J.S., Niederweis M. The tuberculosis necrotizing toxin is an NAD+ and NADP+ glycohydrolase with distinct enzymatic properties. J. Biol. Chem. 2019;294:3024–3036.
    1. Tal N., Morehouse B.R., Millman A., Stokar-Avihail A., Avraham C., Taya Fedorenko T., Yirmiya E., Herbst E., Brandis A., Mehlman T., et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell. 2021;184:5728–57391.
    1. Tang J.Y., Bullen N.P., Ahmad S., Whitney J.C. Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J. Biol. Chem. 2018;293:1504–1514.
    1. Terakata M., Fukuwatari T., Sano M., Nakao N., Sasaki R., Fukuoka S.I., Shibata K. Establishment of true niacin deficiency in quinolinic acid phosphoribosyltransferase knockout mice. J. Nutr. 2012;142:2148–2153.
    1. Toshchakov V.Y., Neuwald A.F. A survey of TIR domain sequence and structure divergence. Immunogenetics. 2020;72:181–203.
    1. Wan L., Essuman K., Anderson R.G., Sasaki Y., Monteiro F., Chung E.H., Nishimura E.O., DiAntonio A., Milbrandt J., Dangl J.L., Nishimura M.T. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science. 2019;365:799–803.
    1. Whitney J.C., Quentin D., Sawai S., LeRoux M., Harding B.N., Ledvina H.E., Tran B.Q., Robinson H., Goo Y.A., Goodlett D.R., et al. An interbacterial NAD (P)+ glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell. 2015;163:607–619.
    1. World Health Organization . World Health Organization; 2002. Pellagra and its Prevention and Control in Major Emergencies.
    1. Wolf A.R., Wesener D.A., Cheng J., Houston-Ludlam A.N., Beller Z.W., Hibberd M.C., Giannone R.J., Peters S.L., Hettich R.L., Leyn S.A., et al. Bioremediation of a common product of food processing by a human gut bacterium. Cell Host Microbe. 2019;26:463–477.
    1. Xu Y., Tao X., Shen B., Horng T., Medzhitov R., Manley J.L., Tong L. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000;408:111–115.
    1. Yilmaz Ö.H., Katajisto P., Lamming D.W., Gültekin Y., Bauer-Rowe K.E., Sengupta S., Birsoy K., Dursun A., Yilmaz V.O., Selig M., et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486:490–495.

Source: PubMed

3
Tilaa