Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment

Subramanian Boopathi, Adolfo B Poma, Ponmalai Kolandaivel, Subramanian Boopathi, Adolfo B Poma, Ponmalai Kolandaivel

Abstract

In the past two decades, the world has faced several infectious disease outbreaks. Ebola, Influenza A (H1N1), SARS, MERS, and Zika virus have had a massive global impact in terms of economic disruption, the strain on local and global public health. Most recently, the global outbreak of novel coronavirus 2019 (SARS-CoV-2) that causes COVID-19 is a newly discovered virus from the coronavirus family in Wuhan city, China, known to be a great threat to the public health systems. As of 15 April 2020, The Johns Hopkins University estimated that the COVID-19 affected more than two million people, resulting in a death toll above 130,000 around the world. Infected people in Europe and America correspond about 40% and 30% of the total reported cases respectively. At this moment only few Asian countries have controlled the disease, but a second wave of new infections is expected. Predicting inhibitor and target to the COVID-19 is an urgent need to protect human from the disease. Therefore, a protocol to identify anti-COVID-19 candidate based on computer-aided drug design is urgently needed. Thousands of compounds including approved drugs and drugs in the clinical trial are available in the literature. In practice, experimental techniques can measure the time and space average properties but they cannot be captured the structural variation of the COVID-19 during the interaction of inhibitor. Computer simulation is particularly suitable to complement experiments to elucidate conformational changes at the molecular level which are related to inhibition process of the COVID-19. Therefore, computational simulation is essential tool to elucidate the phenomenon. The structure-based virtual screening computational approach will be used to filter the best drugs from the literature, the investigate the structural variation of COVID-19 with the interaction of the best inhibitor is a fundamental step to design new drugs and vaccines which can combat the coronavirus. This mini-review will address novel coronavirus structure, mechanism of action, and trial test of antiviral drugs in the lab and patients with COVID-19.

Keywords: ACE2 receptor; COVID-19; Coronavirus; antiviral drugs; computational simulation; coronavirus Spike.

Figures

Figure 1.
Figure 1.
A) Schematic representation of the genome organization and functional domains of S protein for COVID-19. The single-stranded RNA genomes of COVID-19 encode two large genes, the ORF1a and ORF1b genes, which encode 16 non-structural proteins (nsp1–nsp16). The structural genes encode the structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N). The accessory genes denoted in shades of green. The structure of S protein is shown beneath the genome organization. The S protein is consisting of the S1 and S2 subunits. The S1/S2 cleavage sites are highlighted by dotted lines. In the S-protein, cytoplasm domain (CP); fusion peptide (FP); heptad repeat (HR); receptor-binding domain (RBD); signal peptide (SP); transmembrane domain (TM) are shown B) The viral surface proteins, spike, envelope and membrane, are embedded in a lipid bilayer. The single-stranded positive-sense viral RNA is associated with the nucleocapsid protein.
Figure 2.
Figure 2.
The schematic diagram of the mechanism of COVID-19 entry and viral replication and viral RNA packing in the human cell.
Figure 3.
Figure 3.
Three-dimensional structure of COVID-19 Mpro (Jin et al., 2020).
Figure 4.
Figure 4.
Cartoon representation of COVID-19 Mpro with Antiviral inhibitors, Lopinar and N3 highlighted in box.

References

    1. Amanat F., Krammer F. (2020). SARS-CoV-2 vaccines: status report Immunity, 52(4), 583-589. 10.1016/j.immuni.2020.03.007
    1. Anand K., Ziebuhr J., Wadhwani P., Mesters J. R., & Hilgenfeld R. (2003). (3CL pro) Structure: Basis for design of Anti-SARS drugs. Science, 300(5626), 1763–1767. 10.1126/science.1085658
    1. Bacharier L. B., Guilbert T. W., Mauger D. T., Boehmer S., Beigelman A., Fitzpatrick A. M., Jackson D. J., Baxi S. N., Benson M., Burnham C.-A D., Cabana M., Castro M., Chmiel J. F., Covar R., Daines M., Gaffin J. M., Gentile D. A., Holguin F., Israel E., Kelly H. W., Lazarus S. C., & Martinez F. D., for the National Heart, Lung, and Blood Institute’s AsthmaNet (2015). Early Administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses a randomized clinical trial. JAMA - Journal of the American Medical Association, 314(19), 2034–2044. 10.1001/jama.2015.13896
    1. Baden L. R., & Rubin E. J. (2020). Covid-19 - The search for effective therapy. The New England Journal of Medicine, . 10.1056/NEJMe2005477.
    1. Bosseboeuf E., Aubry M., Nhan T., de Pina J. J., Rolain J. M., Raoult D., & Musso D. (2018). Azithromycin inhibits the replication of Zika virus. Journal of Antivirals & Antiretrovirals, 10(1), 6–11. 10.4172/1948-5964.1000173
    1. Boström J., Brown D. G., Young R. J., & Keserü G. M. (2018). Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 17(10), 709–727. 10.1038/nrd.2018.116
    1. Caly L., Druce J. D., Catton M. G., Jans D. A., & Wagstaff K. M. (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787 10.1016/j.antiviral.2020.104787
    1. Bin Cao M.D., Yeming Wang M. D., Danning Wen M. D., Wen Liu M. S., Jingli Wang M. D., Guohui Fan M. S., Lianguo Ruan M. D., Bin Song M. D., Yanping Cai M. D., Ming Wei M. D., Xingwang Li M. D., Jiaan Xia M. D., Nanshan Chen M. D., Jie Xiang M. D., Ting Yu M. D., Tao Bai M. D., Xuelei Xie M. D., Li Zhang M. D., Caihong Li M. D., … & Chen Wang, M. D. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 1–13. 10.1056/NEJMoa2001282.
    1. Centers for Desease Control and Prevention (2005). Centers for Disease Control and Prevention. Frequently asked questions about SARS. .
    1. Chinese Clinical Trial Registry (n.d). .
    1. Chu C. M., Cheng V. C. C., Hung I. F. N., Wong M. M. L., Chan K. H., Chan K. S., … Yuen K. Y. (2004). Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 59(3), 252–256. 10.1136/thorax.2003.012658
    1. Colson P., Rolain J.-M., Lagier J.-C., Brouqui P., & Raoult D. (2020). Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. International Journal of Antimicrobial Agents, 55(4), 105932 10.1016/j.ijantimicag.2020.105932
    1. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (2020). (CSSE) at Johns Hopkins University . Retrieved from
    1. COVID-19 featured content (2020). . Retrieved from
    1. Gao J., Tian Z., & Yang X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72–73. 10.5582/bst.2020.01047
    1. Gautret P., Lagier J.-C., Parola P., Hoang V. T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V. E., Dupont H. T., Honoré S., Colson P., Chabrière E., La Scola B., Rolain J.-M., Brouqui P., & Raoult D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 105949 10.1016/j.ijantimicag.2020.105949
    1. Graham R. L., Donaldson E. F., & Baric R. S. (2013). A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews Microbiology, 11(12), 836–848. 10.1038/nrmicro3143
    1. Gupta M. K., Vemula S., Donde R., Gouda G., Behera L., & Vadde R. (2020). In silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics. 10.1080/07391102.2020.1751300
    1. Hasan A., Paray B. A., Hussain A., Qadir F. A., Attar F., Aziz F. M., … Falahati M. (2020). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure and Dynamics, 1–13. 10.1080/07391102.2020.1754293
    1. Holshue M. L., DeBolt C., Lindquist S., Lofy K. H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., Diaz G., Cohn A., Fox L., Patel A., Gerber S. I., Kim L., Tong S., Lu X., Lindstrom S., … Pillai S. K. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine, 382(10), 929–936. 10.1056/NEJMoa2001191
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., … Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. The Lancet, 395(10223), 497–506. 10.1016/S0140-6736(20)30183-5
    1. Jin Y.-H., Cai L., Cheng Z.-S., Cheng H., Deng T., Fan Y.-P., Fang C., Huang D., Huang L.-Q., Huang Q., Han Y., Hu B., Hu F., Li B.-H., Li Y.-R., Liang K., Lin L.-K., Luo L.-S., Ma J., Ma L.-L., Peng Z.-Y., & Wang X.-H., for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM) (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), 1–23. 10.1186/s40779-020-0233-6
    1. Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., … Yang H. (2020). Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. BioRxiv, 202002.26.964882. 10.1101/2020.02.26.964882
    1. Khan R. J., Jha R. K., Amera G., Jain M., Singh E., Pathak A., … Singh A. K. (2020). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-Ribose Methyltransferase. Journal of Biomolecular Structure & Dynamics. 10.1080/07391102.2020.1753577
    1. Kirchdoerfer R. N., Cottrell C. A., Wang N., Pallesen J., Yassine H. M., Turner H. L., Corbett K. S., Graham B. S., McLellan J. S., & Ward A. B. (2016). Pre-fusion structure of a human coronavirus spike protein. Nature, 531(7592), 118–121. 10.1038/nature17200
    1. Koenig K. L. (2015). Identify-isolate-inform: A modified tool for initial detection and management of middle east respiratory syndrome patients in the emergency department. Western Journal of Emergency Medicine, 16(5), 619–624. 10.5811/westjem.2015.7.27915
    1. Kupferschmidt K., & Cohen J. (2020). Race to find COVID-19 treatments accelerates. Science, 367(6485), 1412–1413. 10.1126/science.367.6485.1412
    1. Li F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. 10.1146/annurev-virology-110615-042301
    1. Lissenberg A., Vrolijk M. M., van Vliet A. L. W., Langereis M. A., de Groot-Mijnes J. D. F., Rottier P. J. M., & de Groot R. J. (2005). Luxury at a Cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. Journal of Virology, 79(24), 15054–15063. 10.1128/JVI.79.24.15054-15063.2005
    1. Madrid P. B., Panchal R. G., Warren T. K., Shurtleff A. C., Endsley A. N., Green C. E., Kolokoltsov A., Davey R., Manger I. D., Gilfillan L., Bavari S., & Tanga M. J. (2015). Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infectious Diseases, 1(7), 317–326. 10.1021/acsinfecdis.5b00030
    1. Mair-Jenkins J., Saavedra-Campos M., Baillie J. K., Cleary P., Khaw F.-M., Lim W. S., Makki S., Rooney K. D., Nguyen-Van-Tam J. S., & Beck C. R., Convalescent Plasma Study Group (2015). The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. Journal of Infectious Diseases, 211(1), 80–90. 10.1093/infdis/jiu396
    1. Masters P. S. (2006). The molecular biology of coronaviruses. Advances in Virus Research, 65(06), 193–292. 10.1016/S0065-3527(06)66005-3
    1. Mulangu S., Dodd L. E., Davey R. T., Mbaya O. T., Proschan M., Mukadi D., Manzo M. L., Nzolo D., Oloma A. T., Ibanda A., Ali R., Coulibaly S., Levine A. C., Grais R., Diaz J., Lane H. C., Muyembe-Tamfum J.-J., the PALM Writing Group (2019). A randomized, controlled trial of Ebola virus disease therapeutics. New England Journal of Medicine, 381, 2293–2303. 10.1056/NEJMoa1910993
    1. Muralidharan N., Sakthivel R., Velmurugan D., & Gromiha M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. Journal of Biomolecular Structure & Dynamics. 10.1080/07391102.2020.1752802
    1. Nieto-Torres J. L., DeDiego M. L., Verdiá-Báguena C., Jimenez-Guardeño J. M., Regla-Nava J. A., Fernandez-Delgado R., Castaño-Rodriguez C., Alcaraz A., Torres J., Aguilella V. M., & Enjuanes L. (2014). Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis. PLoS Pathogens, 10(5), e1004077 10.1371/journal.ppat.1004077
    1. Pervushin K., Tan E., Parthasarathy K., Lin X., Jiang F. L., Yu D., Vararattanavech A., Soong T. W., Liu D. X., & Torres J. (2009). Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathogens, 5(7), e1000511 10.1371/journal.ppat.1000511
    1. Pillaiyar T., Manickam M., Namasivayam V., Hayashi Y., & Jung S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. 10.1021/acs.jmedchem.5b01461
    1. Ren Z., Yan L., Zhang N., Guo Y., Yang C., Lou Z., & Rao Z. (2013). The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’’ heel”: Current effective inhibitor targeting a 3C-like protease. Protein & Cell, 4(4), 248–250. 10.1007/s13238-013-2841-3
    1. Retallack H., Di Lullo E., Arias C., Knopp K. A., Laurie M. T., Sandoval-Espinosa C., Mancia Leon W. R., Krencik R., Ullian E. M., Spatazza J., Pollen A. A., Mandel-Brehm C., Nowakowski T. J., Kriegstein A. R., & DeRisi J. L. (2016). Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the National Academy of Sciences, 113(50), 14408–14413. 10.1073/pnas.1618029113
    1. Sarma P., Sekhar N., Prajapat M., Avti P., Kaur H., Kumar S., Singh S., Kumar H., Prakash A., Dhibar D. P., Medhi B. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics. 10.1080/07391102.2020.1753580
    1. Savarino A., Di Trani L., Donatelli I., Cauda R., & Cassone A. (2006). New insights into the antiviral effects of chloroquine. The Lancet Infectious Diseases, 6(2), 67–69. 10.1016/S1473-3099(06)70361-9
    1. Schoeman D., & Fielding B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 1–22. 10.1186/s12985-019-1182-0
    1. Sheahan T. P., Sims A. C., Graham R. L., Menachery V. D., Gralinski L. E., Case J. B., Leist S. R., Pyrc K., Feng J. Y., Trantcheva I., Bannister R., Park Y., Babusis D., Clarke M. O., Mackman R. L., Spahn J. E., Palmiotti C. A., Siegel D., Ray A. S., … Baric R. S. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 9(396), eaal3653 10.1126/scitranslmed.aal3653
    1. Simmons G., Gosalia D. N., Rennekamp A. J., Reeves J. D., Diamond S. L., & Bates P. (2005). Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proceedings of the National Academy of Sciences, 102(33), 11876–11881. 10.1073/pnas.0505577102
    1. Song H. C., Seo M.-Y., Stadler K., Yoo B. J., Choo Q.-L., Coates S. R., Uematsu Y., Harada T., Greer C. E., Polo J. M., Pileri P., Eickmann M., Rappuoli R., Abrignani S., Houghton M., & Han J. H. (2004). Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. Journal of Virology, 78(19), 10328–10335. 10.1128/JVI.78.19.10328-10335.2004
    1. Tian X., Li C., Huang A., Xia S., Lu S., Shi Z., Lu L., Jiang S., Yang Z., Wu Y., & Ying T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections, 9(1), 382–385. 10.1080/22221751.2020.1729069
    1. Torres J., Maheswari U., Parthasarathy K., Ng L., Liu D. X., & Gong X. (2007). Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Science, 16(9), 2065–2071. 10.1110/ps.062730007
    1. Van Hemert M. J., Van Den Worm S. H. E., Knoops K., Mommaas A. M., Gorbalenya A. E., & Snijder E. J. (2008). SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathogens, 4(5), e1000054 10.1371/journal.ppat.1000054
    1. Verdiá-Báguena C., Nieto-Torres J. L., Alcaraz A., DeDiego M. L., Torres J., Aguilella V. M., & Enjuanes L. (2012). Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology, 432(2), 485–494. 10.1016/j.virol.2012.07.005
    1. Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., Seidah N. G., & Nichol S. T. (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology Journal, 2(1), 69–10. 10.1186/1743-422X-2-69
    1. Walls A. C., Park Y.-J., Tortorici M. A., Wall A., McGuire A. T., & Veesler D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell, 181(2), 281–212. 10.1016/j.cell.2020.02.058
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., & Xiao G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. 10.1038/s41422-020-0282-0
    1. Wang F., Chen C., Yang K., Xu Y., Liu X., Gao F., Liu H., Chen X., Zhao Q., Liu X., Cai Y., & Yang H. (2017). Michael acceptor-based peptidomimetic inhibitor of main protease from porcine epidemic diarrhea virus. Journal of Medicinal Chemistry, 60(7), 3212–3216. 10.1021/acs.jmedchem.7b00103
    1. Wang Q., Li C., Zhang Q., Wang T., Li J., Guan W., Yu J., Liang M., & Li D. (2010). Interactions of SARS Coronavirus Nucleocapsid Protein with the host cell proteasome subunit p42. Virology Journal, 7(1), 99–98. 10.1186/1743-422X-7-99
    1. WHO Director-General ‘s remarks at the media briefing on 2019-nCoV on 11 February (2020). (n.d). Retrieved from
    1. Wilson L., Gage P., & Ewart G. (2006). Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology, 353(2), 294–306. 10.1016/j.virol.2006.05.028
    1. Wilson L., Mckinlay C., Gage P., & Ewart G. (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology, 330(1), 322–331. 10.1016/j.virol.2004.09.033
    1. World Health Organization (2019). Middle East respiratory syndrome coronavirus (MERS-CoV). .
    1. Wrapp D., Wang N., Corbett K. S., Goldsmith J. A., Hsieh C.-L., Abiona O., Graham B. S., & McLellan J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. 10.1126/science.abb2507
    1. Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y., Yuan M.-L., Zhang Y.-L., Dai F.-H., Liu Y., Wang Q.-M., Zheng J.-J., Xu L., Holmes E. C., & Zhang Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. 10.1038/s41586-020-2008-3
    1. Xue X., Yu H., Yang H., Xue F., Wu Z., Shen W., Li J., Zhou Z., Ding Y., Zhao Q., Zhang X. C., Liao M., Bartlam M., & Rao Z. (2008). Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. Journal of Virology, 82(5), 2515–2527. 10.1128/JVI.02114-07
    1. Yan Y., Zou Z., Sun Y., Li X., Xu K.-F., Wei Y., Jin N., & Jiang C. (2013). Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Research, 23(2), 300–302. 10.1038/cr.2012.165
    1. Yang H., Xie W., Xue X., Yang K., Ma J., Liang W., Zhao Q., Zhou Z., Pei D., Ziebuhr J., Hilgenfeld R., Yuen K. Y., Wong L., Gao G., Chen S., Chen Z., Ma D., Bartlam M., & Rao Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324 10.1371/journal.pbio.0030324
    1. Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S., Pang H., Gao G. F., Anand K., Bartlam M., Hilgenfeld R., & Rao Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences, 100(23), 13190–13195. 10.1073/pnas.1835675100
    1. Zhang L., & Liu Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology, 92(5), 479–490. 10.1002/jmv.25707
    1. Zhao Q., Li S., Xue F., Zou Y., Chen C., Bartlam M., & Rao Z. (2008). Structure of the main protease from a Global Infectious Human Coronavirus, HCoV-HKU1. Journal of Virology, 82(17), 8647–8655. 10.1128/JVI.00298-08
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., Chen H.-D., Chen J., Luo Y., Guo H., Jiang R.-D., Liu M.-Q., Chen Y., Shen X.-R., Wang X., … Shi Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. 10.1038/s41586-020-2012-7

Source: PubMed

3
Tilaa