Xylitol's Health Benefits beyond Dental Health: A Comprehensive Review

Krista Salli, Markus J Lehtinen, Kirsti Tiihonen, Arthur C Ouwehand, Krista Salli, Markus J Lehtinen, Kirsti Tiihonen, Arthur C Ouwehand

Abstract

Xylitol has been widely documented to have dental health benefits, such as reducing the risk for dental caries. Here we report on other health benefits that have been investigated for xylitol. In skin, xylitol has been reported to improve barrier function and suppress the growth of potential skin pathogens. As a non-digestible carbohydrate, xylitol enters the colon where it is fermented by members of the colonic microbiota; species of the genus Anaerostipes have been reported to ferment xylitol and produce butyrate. The most common Lactobacillus and Bifidobacterium species do not appear to be able to grow on xylitol. The non-digestible but fermentable nature of xylitol also contributes to a constipation relieving effect and improved bone mineral density. Xylitol also modulates the immune system, which, together with its antimicrobial activity contribute to a reduced respiratory tract infection, sinusitis, and otitis media risk. As a low caloric sweetener, xylitol may contribute to weight management. It has been suggested that xylitol also increases satiety, but these results are not convincing yet. The benefit of xylitol on metabolic health, in addition to the benefit of the mere replacement of sucrose, remains to be determined in humans. Additional health benefits of xylitol have thus been reported and indicate further opportunities but need to be confirmed in human studies.

Keywords: bone health; bowel function; immune function; otitis media; prebiotic; respiratory tract infections; satiety; sinusitis; sugar alcohol; weight management.

Conflict of interest statement

All authors are employees of DuPont Nutrition & Biosciences. DuPont Nutrition & Biosciences manufactures and markets xylitol. The authors declare no other conflict of interest.

Figures

Figure 1
Figure 1
Chemical structure of xylitol ©DuPont Nutrition & Biosciences.
Figure 2
Figure 2
Proposed effects of xylitol on skin health. ©DuPont Nutrition & Biosciences.
Figure 3
Figure 3
Summary of non-dental health benefits of xylitol. Arrow thickness indicates the level of documentation. Thin arrows indicate only in vitro or animal data, while thick arrows indicate some level of human data.

References

    1. Ur-Rehman S., Mushtaq Z., Zahoor T., Jamil A., Murtaza M.A. Xylitol: A review on bioproduction, application, health benefits, and related safety issues. Crit. Rev. Food Sci. Nutr. 2015;55:1514–1528. doi: 10.1080/10408398.2012.702288.
    1. Bond M., Dunning N. Xylitol. In: Mitchell H., editor. Sweeteners and Sugar Alternatives in Food Technology. Blackwell Publishing; Oxford, UK: 2006. pp. 295–324.
    1. Janakiram C., Deepan Kumar C.V., Joseph J. Xylitol in preventing dental caries: A systematic review and meta-analyses. J. Nat. Sci. Biol. Med. 2017;8:16–21. doi: 10.4103/0976-9668.198344.
    1. Mäkinen K.K. Gastrointestinal Disturbances Associated with the Consumption of Sugar Alcohols with Special Consideration of Xylitol: Scientific Review and Instructions for Dentists and Other Health-Care Professionals. Int. J. Dent. 2016;2016:5967907. doi: 10.1155/2016/5967907.
    1. European Food Safety Authority Xylitol chewing gum/pastilles and reduction of the risk of tooth decay. EFSA J. 2008;6:852. doi: 10.2903/j.efsa.2008.852.
    1. Livesey G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003;16:163–191. doi: 10.1079/NRR200371.
    1. Amo K., Arai H., Uebanso T., Fukaya M., Koganei M., Sasaki H., Yamamoto H., Taketani Y., Takeda E. Effects of xylitol on metabolic parameters and visceral fat accumulation. J. Clin. Biochem. Nutr. 2011;49:1–7. doi: 10.3164/jcbn.10-111.
    1. Storey D., Lee A., Bornet F., Brouns F. Gastrointestinal tolerance of erythritol and xylitol ingested in a liquid. Eur. J. Clin. Nutr. 2007;61:349–354. doi: 10.1038/sj.ejcn.1602532.
    1. Abdayem R., Haftek M. [The epidermal barrier] Ann. Derm. Venereol. 2018;145:293–301. doi: 10.1016/j.annder.2017.12.001.
    1. Umino Y., Ipponjima S., Denda M. Modulation of lipid fluidity likely contributes to the fructose/xylitol-induced acceleration of epidermal permeability barrier recovery. Arch. Dermatol. Res. 2019;311:317–324. doi: 10.1007/s00403-019-01905-0.
    1. Payér E., Szabó-Papp J., Ambrus L., Szöllösi A.G., Andrási M., Dikstein S., Kemény L., Juhász I., Szegedi A., Bíró T., et al. Beyond the physico-chemical barrier: Glycerol and xylitol markedly yet differentially alter gene expression profiles and modify signalling pathways in human epidermal keratinocytes. Exp. Dermatol. 2018;27:280–284. doi: 10.1111/exd.13493.
    1. Kirschner N., Rosenthal R., Gunzel D., Moll I., Brandner J.M. Tight junctions and differentiation–A chicken or the egg question? Exp. Dermatol. 2012;21:171–175. doi: 10.1111/j.1600-0625.2011.01431.x.
    1. Korponyai C., Szél E., Behány Z., Varga E., Mohos G., Dura A., Dikstein S., Kemény L., Erös G. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin. Acta Derm. Venereol. 2017;97:182–187. doi: 10.2340/00015555-2493.
    1. Szél E., Polyánka H., Szabó K., Hartmann P., Degovics D., Balázs B., Németh I.B., Korponyai C., Csányi E., Kaszaki J., et al. Anti-irritant and anti-inflammatory effects of glycerol and xylitol in sodium lauryl sulphate-induced acute irritation. J. Eur. Acad. Dermatol. Venereol. 2015;29:2333–2341. doi: 10.1111/jdv.13225.
    1. Korponyai C., Kovács R.K., Erös G., Dikstein S., Kemény L. Antiirritant properties of polyols and amino acids. Dermatitis. 2011;22:141–146.
    1. Odetti P.R., Borgoglio A., Rolandi R. Age-related increase of collagen fluorescence in human subcutaneous tissue. Metabolism. 1992;41:655–658. doi: 10.1016/0026-0495(92)90059-J.
    1. Mattila P.T., Pelkonen P., Knuuttila M.L. Effects of a long-term dietary xylitol supplementation on collagen content and fluorescence of the skin in aged rats. Gerontology. 2005;51:166–169. doi: 10.1159/000083988.
    1. Knuuttila M.L., Kuoksa T.H., Svanberg M.J., Mattila P.T., Karjalainen K.M., Kolehmainen E. Effects of dietary xylitol on collagen content and glycosylation in healthy and diabetic rats. Life Sci. 2000;67:283–290. doi: 10.1016/S0024-3205(00)00621-4.
    1. Dowd S.E., Sun Y., Smith E., Kennedy J.P., Jones C.E., Wolcott R. Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J. Wound Care. 2009;18:510–512. doi: 10.12968/jowc.2009.18.12.45608.
    1. Ammons M.C., Ward L.S., James G.A. Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int. Wound J. 2011;8:268–273. doi: 10.1111/j.1742-481X.2011.00781.x.
    1. Katsuyama M., Kobayashi Y., Ichikawa H., Mizuno A., Miyachi Y., Matsunaga K., Kawashima M. A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J. Dermatol. Sci. 2005;38:207–213. doi: 10.1016/j.jdermsci.2005.01.003.
    1. El Aidy S., Van Den Bogert B., Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr. Opin. Biotechnol. 2015;32:14–20. doi: 10.1016/j.copbio.2014.09.005.
    1. Hibberd A.A., Lyra A., Ouwehand A.C., Rolny P., Lindegren H., Cedgard L., Wettergren Y. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 2017;4:e000145. doi: 10.1136/bmjgast-2017-000145.
    1. Lenhart A., Chey W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017;8:587–596. doi: 10.3945/an.117.015560.
    1. Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491. doi: 10.1038/nrgastro.2017.75.
    1. Mäkeläinen H.S., Mäkivuokko H.A., Salminen S.J., Rautonen N.E., Ouwehand A.C. The effects of polydextrose and xylitol on microbial community and activity in a 4-stage colon simulator. J. Food Sci. 2007;72:M153–M159. doi: 10.1111/j.1750-3841.2007.00350.x.
    1. Sato T., Kusuhara S., Yokoi W., Ito M., Miyazaki K. Prebiotic potential of L-sorbose and xylitol in promoting the growth and metabolic activity of specific butyrate-producing bacteria in human fecal culture. FEMS Microbiol. Ecol. 2017;93 doi: 10.1093/femsec/fiw227.
    1. Scheppach W., Weiler F. The butyrate story: Old wine in new bottles. Curr. Opin. Clin. Nutr. Metab. Care. 2004;7:563–567. doi: 10.1097/00075197-200409000-00009.
    1. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455. doi: 10.1038/nature12726.
    1. Salminen S., Salminen E., Koivistoinen P., Bridges J., Marks V. Gut microflora interactions with xylitol in the mouse, rat and man. Food Chem. Toxicol. 1985;23:985–990. doi: 10.1016/0278-6915(85)90248-0.
    1. Talattof Z., Azad A., Zahed M., Shahradnia N. Antifungal Activity of Xylitol against Candida albicans: An in vitro Study. J. Contemp. Dent. Pract. 2018;19:125–129. doi: 10.5005/jp-journals-10024-2225.
    1. Uebanso T., Kano S., Yoshimoto A., Naito C., Shimohata T., Mawatari K., Takahashi A. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients. 2017;9:756. doi: 10.3390/nu9070756.
    1. Tamura M., Hoshi C., Hori S. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice. Int. J. Mol. Sci. 2013;14:23993–24007. doi: 10.3390/ijms141223993.
    1. Vargas S.L., Patrick C.C., Ayers G.D., Hughes W.T. Modulating effect of dietary carbohydrate supplementation on Candida albicans colonization and invasion in a neutropenic mouse model. Infect. Immun. 1993;61:619–626.
    1. Hedberg M., Hasslöf P., Sjöström I., Twetman S., Stecksén-Blicks C. Sugar fermentation in probiotic bacteria-an in vitro study. Oral Microbiol. Immunol. 2008;23:482–485. doi: 10.1111/j.1399-302X.2008.00457.x.
    1. Haukioja A., Söderling E., Tenovuo J. Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro. Caries Res. 2008;42:449–453. doi: 10.1159/000163020.
    1. Keller M.K., Twetman S. Acid production in dental plaque after exposure to probiotic bacteria. BMC Oral Health. 2012;12:44. doi: 10.1186/1472-6831-12-44.
    1. Brambilla E., Ionescu A.C., Cazzaniga G., Ottobelli M., Samaranayake L.P. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation. J. Basic Microbiol. 2016;56:480–492. doi: 10.1002/jobm.201500329.
    1. Rätsep M., Kõljalg S., Sepp E., Smidt I., Truusalu K., Songisepp E., Stsepetova J., Naaber P., Mikelsaar R.H., Mikelsaar M. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection. Anaerobe. 2017;47:94–103. doi: 10.1016/j.anaerobe.2017.03.019.
    1. Yu T., Zheng Y.P., Tan J.C., Xiong W.J., Wang Y., Lin L. Effects of Prebiotics and Synbiotics on Functional Constipation. Am. J. Med Sci. 2017;353:282–292. doi: 10.1016/j.amjms.2016.09.014.
    1. Gong Y., Zhang Q., Qiao L., Lv D., Ruan J., Chen H., Gong J., Shi G. Xylitol Gum Chewing to Achieve Early Postoperative Restoration of Bowel Motility After Laparoscopic Surgery. Surg. Laparosc. Endosc. Percutan. Tech. 2015;25:303–306. doi: 10.1097/SLE.0000000000000174.
    1. Lee J.T., Hsieh M.H., Cheng P.J., Lin J.R. The Role of Xylitol Gum Chewing in Restoring Postoperative Bowel Activity After Cesarean Section. Biol. Res. Nurs. 2016;18:167–172. doi: 10.1177/1099800415592966.
    1. Yang P., Long W.J., Wei L. Chewing Xylitol Gum could Accelerate Bowel motility Recovery after Elective Open Proctectomy for Rectal Cancer. Rev. Investig. Clin. 2018;70:53–58. doi: 10.24875/RIC.18002428.
    1. Ottman N., Smidt H., de Vos W.M., Belzer C. The function of our microbiota: Who is out there and what do they do? Front. Cell. Infect. Microbiol. 2012;2:104. doi: 10.3389/fcimb.2012.00104.
    1. Lehtinen M.J., Hibberd A.A., Mannikko S., Yeung N., Kauko T., Forssten S., Lehtoranta L., Lahtinen S.J., Stahl B., Lyra A., et al. Nasal microbiota clusters associate with inflammatory response, viral load, and symptom severity in experimental rhinovirus challenge. Sci. Rep. 2018;8:11411. doi: 10.1038/s41598-018-29793-w.
    1. Man W.H., de Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017;15:259–270. doi: 10.1038/nrmicro.2017.14.
    1. Brook I. Microbiology of chronic rhinosinusitis. Eur. J. Clin. Microbiol. Infect. Dis. 2016;35:1059–1068. doi: 10.1007/s10096-016-2640-x.
    1. Azarpazhooh A., Lawrence H.P., Shah P.S. Xylitol for preventing acute otitis media in children up to 12 years of age. Cochrane Database Syst. Rev. 2016;8:CD007095. doi: 10.1002/14651858.CD007095.pub3.
    1. Kontiokari T., Uhari M., Koskela M. Effect of xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob. Agents Chemother. 1995;39:1820–1823. doi: 10.1128/AAC.39.8.1820.
    1. Kontiokari T., Svanberg M., Mattila P., Leinonen M., Uhari M. Quantitative analysis of the effect of xylitol on pneumococcal nasal colonisation in rats. FEMS Microbiol. Lett. 1999;178:313–317. doi: 10.1111/j.1574-6968.1999.tb08693.x.
    1. Zabner J., Seiler M.P., Launspach J.L., Karp P.H., Kearney W.R., Look D.C., Smith J.J., Welsh M.J. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc. Natl. Acad. Sci. USA. 2000;97:11614–11619. doi: 10.1073/pnas.97.21.11614.
    1. Cingi C., Birdane L., Ural A., Oghan F., Bal C. Comparison of nasal hyperosmolar xylitol and xylometazoline solutions on quality of life in patients with inferior turbinate hypertrophy secondary to nonallergic rhinitis. Int. Forum Allergy Rhinol. 2014;4:475–479. doi: 10.1002/alr.21311.
    1. Little P., Stuart B., Wingrove Z., Mullee M., Thomas T., Johnson S., Leydon G., Richards-Hall S., Williamson I., Yao L., et al. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: A randomized controlled factorial trial. CMAJ: Can. Med Assoc. J. 2017;189:E1543–E1550. doi: 10.1503/cmaj.170599.
    1. Jain R., Lee T., Hardcastle T., Biswas K., Radcliff F., Douglas R. The in vitro effect of xylitol on chronic rhinosinusitis biofilms. Rhinology. 2016;54:323–328. doi: 10.4193/Rhin15.380.
    1. Brown C.L., Graham S.M., Cable B.B., Ozer E.A., Taft P.J., Zabner J. Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope. 2004;114:2021–2024. doi: 10.1097/01.mlg.0000147939.90249.47.
    1. Weissman J.D., Fernandez F., Hwang P.H. Xylitol nasal irrigation in the management of chronic rhinosinusitis: A pilot study. Laryngoscope. 2011;121:2468–2472. doi: 10.1002/lary.22176.
    1. Lin L., Tang X., Wei J., Dai F., Sun G. Xylitol nasal irrigation in the treatment of chronic rhinosinusitis. Am. J. Otolaryngol. 2017;38:383–389. doi: 10.1016/j.amjoto.2017.03.006.
    1. Hardcastle T., Jain R., Radcliff F., Waldvogel-Thurlow S., Zoing M., Biswas K., Douglas R. The in vitro mucolytic effect of xylitol and dornase alfa on chronic rhinosinusitis mucus. Int. Forum Allergy Rhinol. 2017;7:889–896. doi: 10.1002/alr.21970.
    1. Tapiainen T., Sormunen R., Kaijalainen T., Kontiokari T., Ikäheimo I., Uhari M. Ultrastructure of Streptococcus pneumoniae after exposure to xylitol. J. Antimicrob. Chemother. 2004;54:225–228. doi: 10.1093/jac/dkh302.
    1. Kurola P., Tapiainen T., Kaijalainen T., Uhari M., Saukkoriipi A. Xylitol and capsular gene expression in Streptococcus pneumoniae. J. Med. Microbiol. 2009;58:1470–1473. doi: 10.1099/jmm.0.011700-0.
    1. Kurola P., Tapiainen T., Sevander J., Kaijalainen T., Leinonen M., Uhari M., Saukkoriipi A. Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. Apmis. 2011;119:135–142. doi: 10.1111/j.1600-0463.2010.02703.x.
    1. Persaud N., Laupacis A., Azarpazhooh A., Birken C., Hoch J.S., Isaranuwatchai W., Maguire J.L., Mamdani M.M., Thorpe K., Allen C., et al. Xylitol for the prevention of acute otitis media episodes in children aged 2–4 years: Protocol for a pragmatic randomised controlled trial. BMJ Open. 2018;8:e020941. doi: 10.1136/bmjopen-2017-020941.
    1. Sato H., Ide Y., Nasu M., Numabe Y. The effects of oral xylitol administration on bone density in rat femur. Odontology. 2011;99:28–33. doi: 10.1007/s10266-010-0143-2.
    1. Mattila P.T., Svanberg M.J., Mäkinen K.K., Knuuttila M.L. Dietary xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats. J. Nutr. 1996;126:1865–1870. doi: 10.1093/jn/126.7.1865.
    1. Mattila P., Svanberg M., Knuuttila M. Diminished bone resorption in rats after oral xylitol administration: A dose-response study. Calcif. Tissue Int. 1995;56:232–235. doi: 10.1007/BF00298616.
    1. Mattila P.T., Svanberg M.J., Pökkä P., Knuuttila M.L. Dietary xylitol protects against weakening of bone biomechanical properties in ovariectomized rats. J. Nutr. 1998;128:1811–1814. doi: 10.1093/jn/128.10.1811.
    1. Kaivosoja S.M., Mattila P.T., Knuuttila M.L. Dietary xylitol protects against the imbalance in bone metabolism during the early phase of collagen type II-induced arthritis in dark agouti rats. Metabolism. 2008;57:1052–1055. doi: 10.1016/j.metabol.2008.03.007.
    1. Mattila P.T., Knuuttila M.L., Svanberg M.J. Dietary xylitol supplementation prevents osteoporotic changes in streptozotocin-diabetic rats. Metabolism. 1998;47:578–583. doi: 10.1016/S0026-0495(98)90243-8.
    1. Castelo-Branco C., Soveral I. Phytoestrogens and bone health at different reproductive stages. Gynecol. Endocrinol. 2013;29:735–743. doi: 10.3109/09513590.2013.801441.
    1. Tyagi A.M., Yu M., Darby T.M., Vaccaro C., Li J.Y., Owens J.A., Hsu E., Adams J., Weitzmann M.N., Jones R.M., et al. The Microbial Metabolite Butyrate Stimulates Bone Formation via T Regulatory Cell-Mediated Regulation of WNT10B Expression. Immunity. 2018;49:1116–1131.e7. doi: 10.1016/j.immuni.2018.10.013.
    1. Gleeson M., Bosch J. The human immune system. In: Gleeson M., Bishop N., Walsh N., editors. Excercise Immunology. Routledge; London, UK: 2013.
    1. Jakob A., Williamson J.R., Asakura T. Xylitol metabolism in perfused rat liver. Interactions with gluconeogenesis and ketogenesis. J. Biol. Chem. 1971;246:7623–7631.
    1. Takahashi K., Akiba Y. Single administration of xylitol to newly hatched chicks enhances growth, digestive enzyme activity and immune responses by 12 d of age. Br. Poult. Sci. 2005;46:635–640. doi: 10.1080/00071660500302612.
    1. Renko M., Valkonen P., Tapiainen T., Kontiokari T., Mattila P., Knuuttila M., Svanberg M., Leinonen M., Karttunen R., Uhari M. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis. BMC Microbiol. 2008;8:45. doi: 10.1186/1471-2180-8-45.
    1. Salli K.M., Gürsoy U.K., Söderling E.M., Ouwehand A.C. Effects of Xylitol and Sucrose Mint Products on Streptococcus mutans Colonization in a Dental Simulator Model. Curr. Microbiol. 2017;74:1153–1159. doi: 10.1007/s00284-017-1299-6.
    1. Xu M.L., Wi G.R., Kim H.J., Kim H.J. Ameliorating Effect of Dietary Xylitol on Human Respiratory Syncytial Virus (hRSV) Infection. Biol. Pharm. Bull. 2016;39:540–546. doi: 10.1248/bpb.b15-00773.
    1. Yin S.Y., Kim H.J., Kim H.J. Protective effect of dietary xylitol on influenza A virus infection. PloS ONE. 2014;9:e84633. doi: 10.1371/journal.pone.0084633.
    1. Takahashi K., Mashiko T., Akiba Y. Effect of dietary concentration of xylitol on growth in male broiler chicks during immunological stress. Poult. Sci. 2000;79:743–747. doi: 10.1093/ps/79.5.743.
    1. Grundy S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016;26:364–373. doi: 10.1016/j.tcm.2015.10.004.
    1. Rahman A., Islam S. Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: A dose response study. J. Food Sci. 2014;79:H1436–H1442. doi: 10.1111/1750-3841.12520.
    1. Geidenstam N., Al-Majdoub M., Ekman M., Spegel P., Ridderstrale M. Metabolite profiling of obese individuals before and after a one year weight loss program. Int. J. Obes. (Lond.) 2017;41:1369–1378. doi: 10.1038/ijo.2017.124.
    1. Wölnerhanssen B.K., Cajacob L., Keller N., Doody A., Rehfeld J.F., Drewe J., Peterli R., Beglinger C., Meyer-Gerspach A.C. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. Am. J. Physiol. Endocrinol. Metab. 2016;310:E1053–E1061. doi: 10.1152/ajpendo.00037.2016.
    1. King N.A., Craig S.A.S., Pepper T., Blundell J.E. Evaluation of the independent and combined effects of xylitol and polydextrose consumed as a snack on hunger and energy intake over 10 d. Br. J. Nutr. 2005;93:911–915. doi: 10.1079/BJN20051431.
    1. Salminen E.K., Salminen S.J., Porkka L., Kwasowski P., Marks V., Koivistoinen P.E. Xylitol vs glucose: Effect on the rate of gastric emptying and motilin, insulin, and gastric inhibitory polypeptide release. Am. J. Clin. Nutr. 1989;49:1228–1232. doi: 10.1093/ajcn/49.6.1228.
    1. Ohno T., Mochiki E., Kuwano H. The roles of motilin and ghrelin in gastrointestinal motility. Int. J. Pept. 2010;2010 doi: 10.1155/2010/820794.
    1. Shafer R.B., Levine A.S., Marlette J.M., Morley J.E. Effects of xylitol on gastric emptying and food intake. Am. J. Clin. Nutr. 1987;45:744–747. doi: 10.1093/ajcn/45.4.744.
    1. Natah S.S., Hussien K.R., Tuominen J.A., Koivisto V.A. Metabolic response to lactitol and xylitol in healthy men. Am. J. Clin. Nutr. 1997;65:947–950. doi: 10.1093/ajcn/65.4.947.
    1. Islam S., Indrajit M. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats. Ann. Nutr. Metab. 2012;61:57–64. doi: 10.1159/000338440.
    1. Islam M.S. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J. Med. Food. 2011;14:505–511. doi: 10.1089/jmf.2010.0015.
    1. Förster H., Quadbeck R., Gottstein U. Metabolic tolerance to high doses of oral xylitol in human volunteers not previously adapted to xylitol. Int. J. Vitam. Nutr. Res. Suppl. 1982;22:67–88.
    1. Islam M.S. Xylitol increases serum triglyceride in normal but not in a type 2 diabetes model of rats. J. Med. Food. 2012;15:677. doi: 10.1089/jmf.2012.0077.
    1. Nevitt S.J., Thornton J., Murray C.S., Dwyer T. Inhaled mannitol for cystic fibrosis. Cochrane Database Syst. Rev. 2018;2:CD008649. doi: 10.1002/14651858.CD008649.pub3.
    1. Drakoularakou A., Hasselwander O., Edinburgh M., Ouwehand A.C. Lactitol, an emerging prebiotic: Functional properties with a focus on digestive health. Food Sci. Technol. Bull. 2007;3:71–80. doi: 10.1616/1476-2137.14685.
    1. Sarmiento-Rubiano L.A., Zuniga M., Perez-Martinez G., Yebra M.J. Dietary supplementation with sorbitol results in selective enrichment of lactobacilli in rat intestine. Res. Microbiol. 2007;158:694–701. doi: 10.1016/j.resmic.2007.07.007.
    1. Mueller-Lissner S.A., Wald A. Constipation in adults. BMJ Clin. Evid. 2010;7:413.
    1. Andre P., Villain F. Free radical scavenging properties of mannitol and its role as a constituent of hyaluronic acid fillers: A literature review. Int. J. Cosmet. Sci. 2017;39:355–360. doi: 10.1111/ics.12386.
    1. Yamamoto Y., Kubota N., Takahashi T., To M., Hayashi T., Shimizu T., Kamata Y., Saruta J., Tsukinoki K. Continuous combined intake of polydextrose and lactitol stimulates cecal fermentation and salivary IgA secretion in rats. J. Oral. Sci. 2017;59:603–610. doi: 10.2334/josnusd.16-0820.
    1. Chukwuma C.I., Ibrahim M.A., Islam M.S. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats. Int. J. Food Sci. Nutr. 2017;68:73–81. doi: 10.1080/09637486.2016.1216527.
    1. Chukwuma C.I., Mopuri R., Nagiah S., Chuturgoon A.A., Islam M.S. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats. Eur. J. Nutr. 2018;57:2431–2444. doi: 10.1007/s00394-017-1516-x.
    1. Chukwuma C.I., Islam M.S. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats. Appl. Physiol. Nutr. Metab. 2017;42:377–383. doi: 10.1139/apnm-2016-0433.

Source: PubMed

3
Tilaa