Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors

Jan-Michael Werner, Philipp Lohmann, Gereon R Fink, Karl-Josef Langen, Norbert Galldiks, Jan-Michael Werner, Philipp Lohmann, Gereon R Fink, Karl-Josef Langen, Norbert Galldiks

Abstract

The number of positron-emission tomography (PET) tracers used to evaluate patients with brain tumors has increased substantially over the last years. For the management of patients with brain tumors, the most important indications are the delineation of tumor extent (e.g., for planning of resection or radiotherapy), the assessment of treatment response to systemic treatment options such as alkylating chemotherapy, and the differentiation of treatment-related changes (e.g., pseudoprogression or radiation necrosis) from tumor progression. Furthermore, newer PET imaging approaches aim to address the need for noninvasive assessment of tumoral immune cell infiltration and response to immunotherapies (e.g., T-cell imaging). This review summarizes the clinical value of the landscape of tracers that have been used in recent years for the above-mentioned indications and also provides an overview of promising newer tracers for this group of patients.

Keywords: FACBC; FDOPA; FET; amino acid; brain metastases; glioma; immunoPET; molecular imaging.

Conflict of interest statement

Related to the present work, the authors disclosed no potential conflicts of interest.

Figures

Figure 1
Figure 1
Chemical structure of radiolabeled amino acids.
Figure 2
Figure 2
Radiation necrosis and chronic inflammation in a patient with brain metastases of a B-Raf proto-oncogene (BRAF)-mutated malignant melanoma who had been treated with whole-brain radiation therapy combined with concurrent dabrafenib plus trametinib. Twenty-four months later, the contrast-enhanced magnetic resonance imaging (MRI) indicates a recurrence of the brain metastases (left panel), whereas the O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron-emission tomography (PET) shows only insignificant metabolic activity and is consistent with the findings of treatment-related MRI changes. Neuropathological findings (right panel) after stereotactic biopsy show signs of radiation necrosis as well as considerable T-cell infiltration. (A) Hyaline, eosinophilic necrosis with evidence of a necrotic vessel wall (arrowhead). (B) Vital brain parenchyma besides necrosis with activated microglia cells (arrowhead), and blood vessels with lymphocyte infiltrates (arrows) without evidence of tumor cells (inserted box). (C) Adjacent to inflamed blood vessels (arrows), a resorption of necroses by macrophages (block arrows) as well as activated microglia cells (arrowheads) and astrocytes in the brain parenchyma (inserted box). (D) The main population of intra- and perivascular T-cell infiltrates are CD3+ (arrow), but also CD4+ (inserted box left) and CD8+ (inserted box right) T-cells contribute to the infiltrates (modified from Galldiks et al. [10], with permission from Oxford University Press).
Figure 3
Figure 3
[64Cu]-DOTA-trastuzumab positron-emission tomography (PET) and contrast-enhanced magnetic resonance imaging (MRI) performed one day after initiation of treatment with trastuzumab in a patient with a human epidermal growth factor receptor 2 (HER2)-positive breast cancer with brain metastases. In single brain metastases, [64Cu]-DOTA-trastuzumab PET helps to improve lesion detection (arrow) (modified from Tamura et al. [160], with permission from the Society of Nuclear Medicine and Molecular Imaging).
Figure 4
Figure 4
Detection of immune response in a patient with recurrent glioblastoma using 2-chloro-2′-deoxy-2′-[18F]fluoro-9-b-D-arabinofuranosyl-adenine ([18F]CFA) positron-emission tomography (PET) and advanced magnetic resonance imaging (MRI) before (upper panel) and after treatment with dendritic cell vaccination and programmed cell death receptor-1 (PD-1) blockade using pembrolizumab (lower panel). Following treatment, [18F]CFA uptake is considerably increased, indicating an immune-cell infiltration, and helps distinguishing tumor progression from inflammation (modified from Antonios et al. [169], with permission from the National Academy of Sciences).

References

    1. Lohmann P., Stavrinou P., Lipke K., Bauer E.K., Ceccon G., Werner J.M., Neumaier B., Fink G.R., Shah N.J., Langen K.J., et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:591–602. doi: 10.1007/s00259-018-4188-8.
    1. Dhermain F.G., Hau P., Lanfermann H., Jacobs A.H., van den Bent M.J. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010;9:906–920. doi: 10.1016/S1474-4422(10)70181-2.
    1. Brandsma D., Stalpers L., Taal W., Sminia P., van den Bent M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9:453–461. doi: 10.1016/S1470-2045(08)70125-6.
    1. Hygino da Cruz L.C., Jr., Rodriguez I., Domingues R.C., Gasparetto E.L., Sorensen A.G. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. AJNR Am. J. Neuroradiol. 2011;32:1978–1985. doi: 10.3174/ajnr.A2397.
    1. Yang I., Aghi M.K. New advances that enable identification of glioblastoma recurrence. Nat. Rev. Clin. Oncol. 2009;6:648–657. doi: 10.1038/nrclinonc.2009.150.
    1. Kumar A.J., Leeds N.E., Fuller G.N., Van Tassel P., Maor M.H., Sawaya R.E., Levin V.A. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000;217:377–384. doi: 10.1148/radiology.217.2.r00nv36377.
    1. Langen K.J., Galldiks N., Hattingen E., Shah N.J. Advances in neuro-oncology imaging. Nat. Rev. Neurol. 2017;13:279–289. doi: 10.1038/nrneurol.2017.44.
    1. Galldiks N., Lohmann P., Albert N.L., Tonn J.C., Langen K.-J. Current status of PET imaging in neuro-oncology. Neurooncol. Adv. 2019;1 doi: 10.1093/noajnl/vdz010.
    1. Brandsma D., van den Bent M.J. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr. Opin. Neurol. 2009;22:633–638. doi: 10.1097/WCO.0b013e328332363e.
    1. Galldiks N., Kocher M., Ceccon G., Werner J.M., Brunn A., Deckert M., Pope W.B., Soffietti R., Le Rhun E., Weller M., et al. Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: Response, progression, and pseudoprogression. Neuro Oncol. 2020;22:17–30. doi: 10.1093/neuonc/noz147.
    1. Galldiks N., Dunkl V., Stoffels G., Hutterer M., Rapp M., Sabel M., Reifenberger G., Kebir S., Dorn F., Blau T., et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:685–695. doi: 10.1007/s00259-014-2959-4.
    1. Ahluwalia M.S., Wen P.Y. Antiangiogenic therapy for patients with glioblastoma: Current challenges in imaging and future directions. Expert Rev. Anticancer Ther. 2011;11:653–656. doi: 10.1586/era.11.35.
    1. Taal W., Brandsma D., de Bruin H.G., Bromberg J.E., Swaak-Kragten A.T., Smitt P.A., van Es C.A., van den Bent M.J. Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer. 2008;113:405–410. doi: 10.1002/cncr.23562.
    1. Radbruch A., Fladt J., Kickingereder P., Wiestler B., Nowosielski M., Baumer P., Schlemmer H.P., Wick A., Heiland S., Wick W., et al. Pseudoprogression in patients with glioblastoma: Clinical relevance despite low incidence. Neuro Oncol. 2015;17:151–159. doi: 10.1093/neuonc/nou129.
    1. Galldiks N., Kocher M., Langen K.J. Pseudoprogression after glioma therapy: An update. Expert Rev. Neurother. 2017;17:1109–1115. doi: 10.1080/14737175.2017.1375405.
    1. Young R.J., Gupta A., Shah A.D., Graber J.J., Zhang Z., Shi W., Holodny A.I., Omuro A.M. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology. 2011;76:1918–1924. doi: 10.1212/WNL.0b013e31821d74e7.
    1. Galldiks N., Langen K.J., Albert N.L., Chamberlain M., Soffietti R., Kim M.M., Law I., Le Rhun E., Chang S., Schwarting J., et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol. 2019;21:585–595. doi: 10.1093/neuonc/noz003.
    1. Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010;28:1963–1972. doi: 10.1200/JCO.2009.26.3541.
    1. Reardon D.A., Weller M. Pseudoprogression: Fact or wishful thinking in neuro-oncology? Lancet Oncol. 2018;19:1561–1563. doi: 10.1016/S1470-2045(18)30654-5.
    1. Nandu H., Wen P.Y., Huang R.Y. Imaging in neuro-oncology. Ther. Adv. Neurol. Disord. 2018;11 doi: 10.1177/1756286418759865.
    1. Albert N.L., Weller M., Suchorska B., Galldiks N., Soffietti R., Kim M.M., la Fougere C., Pope W., Law I., Arbizu J., et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016;18:1199–1208. doi: 10.1093/neuonc/now058.
    1. Wei W., Ni D., Ehlerding E.B., Luo Q.Y., Cai W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol. Cancer Ther. 2018;17:1625–1636. doi: 10.1158/1535-7163.MCT-18-0087.
    1. Wei W., Jiang D., Ehlerding E.B., Luo Q., Cai W. Noninvasive PET Imaging of T cells. Trends Cancer. 2018;4:359–373. doi: 10.1016/j.trecan.2018.03.009.
    1. Chernov M., Hayashi M., Izawa M., Ochiai T., Usukura M., Abe K., Ono Y., Muragaki Y., Kubo O., Hori T., et al. Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: Importance of multi-voxel proton MRS. Min-Minim. Invasive Neurosurg. 2005;48:228–234. doi: 10.1055/s-2005-870952.
    1. Hatzoglou V., Yang T.J., Omuro A., Gavrilovic I., Ulaner G., Rubel J., Schneider T., Woo K.M., Zhang Z., Peck K.K., et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol. 2016;18:873–880. doi: 10.1093/neuonc/nov301.
    1. Tomura N., Kokubun M., Saginoya T., Mizuno Y., Kikuchi Y. Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among (11)C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC-Preliminary Results. AJNR Am. J. Neuroradiol. 2017;38:1520–1527. doi: 10.3174/ajnr.A5252.
    1. Palmedo H., Urbach H., Bender H., Schlegel U., Schmidt-Wolf I.G., Matthies A., Linnebank M., Joe A., Bucerius J., Biersack H.J., et al. FDG-PET in immunocompetent patients with primary central nervous system lymphoma: Correlation with MRI and clinical follow-up. Eur. J. Nucl. Med. Mol. Imaging. 2006;33:164–168. doi: 10.1007/s00259-005-1917-6.
    1. Birsen R., Blanc E., Willems L., Burroni B., Legoff M., Le Ray E., Pilorge S., Salah S., Quentin A., Deau B., et al. Prognostic value of early 18F-FDG PET scanning evaluation in immunocompetent primary CNS lymphoma patients. Oncotarget. 2018;9:16822–16831. doi: 10.18632/oncotarget.24706.
    1. Chiavazza C., Pellerino A., Ferrio F., Cistaro A., Soffietti R., Ruda R. Primary CNS Lymphomas: Challenges in Diagnosis and Monitoring. Biomed. Res. Int. 2018;2018:3606970. doi: 10.1155/2018/3606970.
    1. Herholz K., Langen K.J., Schiepers C., Mountz J.M. Brain tumors. Semin. Nucl. Med. 2012;42:356–370. doi: 10.1053/j.semnuclmed.2012.06.001.
    1. Langen K.J., Watts C. Neuro-oncology: Amino acid PET for brain tumours—Ready for the clinic? Nat. Rev. Neurol. 2016;12:375–376. doi: 10.1038/nrneurol.2016.80.
    1. Law I., Albert N.L., Arbizu J., Boellaard R., Drzezga A., Galldiks N., la Fougere C., Langen K.J., Lopci E., Lowe V., et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:540–557. doi: 10.1007/s00259-018-4207-9.
    1. Drake L.R., Hillmer A.T., Cai Z. Approaches to PET Imaging of Glioblastoma. Molecules. 2020;25:568. doi: 10.3390/molecules25030568.
    1. Youland R.S., Kitange G.J., Peterson T.E., Pafundi D.H., Ramiscal J.A., Pokorny J.L., Giannini C., Laack N.N., Parney I.F., Lowe V.J., et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J. Neurooncol. 2013;111:11–18. doi: 10.1007/s11060-012-0986-1.
    1. Papin-Michault C., Bonnetaud C., Dufour M., Almairac F., Coutts M., Patouraux S., Virolle T., Darcourt J., Burel-Vandenbos F. Study of LAT1 Expression in Brain Metastases: Towards a Better Understanding of the Results of Positron Emission Tomography Using Amino Acid Tracers. PLoS ONE. 2016;11:e0157139. doi: 10.1371/journal.pone.0157139.
    1. Wiriyasermkul P., Nagamori S., Tominaga H., Oriuchi N., Kaira K., Nakao H., Kitashoji T., Ohgaki R., Tanaka H., Endou H., et al. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: A cause of the tumor uptake in PET. J. Nucl. Med. 2012;53:1253–1261. doi: 10.2967/jnumed.112.103069.
    1. Okubo S., Zhen H.N., Kawai N., Nishiyama Y., Haba R., Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J. Neurooncol. 2010;99:217–225. doi: 10.1007/s11060-010-0117-9.
    1. Haining Z., Kawai N., Miyake K., Okada M., Okubo S., Zhang X., Fei Z., Tamiya T. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC Clin. Pathol. 2012;12:4. doi: 10.1186/1472-6890-12-4.
    1. Kracht L.W., Friese M., Herholz K., Schroeder R., Bauer B., Jacobs A., Heiss W.D. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur. J. Nucl. Med. Mol. Imaging. 2003;30:868–873. doi: 10.1007/s00259-003-1148-7.
    1. Langen K.J., Hamacher K., Weckesser M., Floeth F., Stoffels G., Bauer D., Coenen H.H., Pauleit D. O-(2-[18F]fluoroethyl)-L-tyrosine: Uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006;33:287–294. doi: 10.1016/j.nucmedbio.2006.01.002.
    1. Galldiks N., Law I., Pope W.B., Arbizu J., Langen K.J. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. Neuroimage Clin. 2017;13:386–394. doi: 10.1016/j.nicl.2016.12.020.
    1. Cicone F., Filss C.P., Minniti G., Rossi-Espagnet C., Papa A., Scaringi C., Galldiks N., Bozzao A., Shah N.J., Scopinaro F., et al. Volumetric assessment of recurrent or progressive gliomas: Comparison between F-DOPA PET and perfusion-weighted MRI. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:905–915. doi: 10.1007/s00259-015-3018-5.
    1. Juhasz C., Dwivedi S., Kamson D.O., Michelhaugh S.K., Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol. Imaging. 2014;13 doi: 10.2310/7290.2014.00015.
    1. Uyttenhove C., Pilotte L., Theate I., Stroobant V., Colau D., Parmentier N., Boon T., Van den Eynde B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 2003;9:1269–1274. doi: 10.1038/nm934.
    1. Batista C.E., Juhasz C., Muzik O., Kupsky W.J., Barger G., Chugani H.T., Mittal S., Sood S., Chakraborty P.K., Chugani D.C. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol. Imaging Biol. 2009;11:460–466. doi: 10.1007/s11307-009-0225-0.
    1. Choudhary G., Langen K.J., Galldiks N., McConathy J. Investigational PET tracers for high-grade gliomas. Q. J. Nucl. Med. Mol. Imaging. 2018;62:281–294. doi: 10.23736/S1824-4785.18.03105-9.
    1. Fuchs B.C., Bode B.P. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Semin. Cancer Biol. 2005;15:254–266. doi: 10.1016/j.semcancer.2005.04.005.
    1. Scalise M., Pochini L., Console L., Losso M.A., Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front. Cell Dev. Biol. 2018;6:96. doi: 10.3389/fcell.2018.00096.
    1. Schuster D.M., Nanni C., Fanti S., Oka S., Okudaira H., Inoue Y., Sorensen J., Owenius R., Choyke P., Turkbey B., et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: Physiologic uptake patterns, incidental findings, and variants that may simulate disease. J. Nucl. Med. 2014;55:1986–1992. doi: 10.2967/jnumed.114.143628.
    1. Hayes A.R., Jayamanne D., Hsiao E., Schembri G.P., Bailey D.L., Roach P.J., Khasraw M., Newey A., Wheeler H.R., Back M. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma. Pract. Radiat. Oncol. 2018;8:230–238. doi: 10.1016/j.prro.2018.01.006.
    1. Kracht L.W., Miletic H., Busch S., Jacobs A.H., Voges J., Hoevels M., Klein J.C., Herholz K., Heiss W.D. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: Local comparison with stereotactic histopathology. Clin. Cancer Res. 2004;10:7163–7170. doi: 10.1158/1078-0432.CCR-04-0262.
    1. Lopez W.O., Cordeiro J.G., Albicker U., Doostkam S., Nikkhah G., Kirch R.D., Trippel M., Reithmeier T. Correlation of (18)F-fluoroethyl tyrosine positron-emission tomography uptake values and histomorphological findings by stereotactic serial biopsy in newly diagnosed brain tumors using a refined software tool. Onco Targets Ther. 2015;8:3803–3815. doi: 10.2147/OTT.S87126.
    1. Pauleit D., Floeth F., Hamacher K., Riemenschneider M.J., Reifenberger G., Muller H.W., Zilles K., Coenen H.H., Langen K.J. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain. 2005;128:678–687. doi: 10.1093/brain/awh399.
    1. Bogsrud T.V., Londalen A., Brandal P., Leske H., Panagopoulos I., Borghammer P., Bach-Gansmo T. 18F-Fluciclovine PET/CT in Suspected Residual or Recurrent High-Grade Glioma. Clin. Nucl. Med. 2019 doi: 10.1097/RLU.0000000000002641.
    1. Michaud L., Beattie B.J., Akhurst T., Dunphy M., Zanzonico P., Finn R., Mauguen A., Schoder H., Weber W.A., Lassman A.B., et al. (18)F-Fluciclovine ((18)F-FACBC) PET imaging of recurrent brain tumors. Eur. J. Nucl. Med. Mol. Imaging. 2019 doi: 10.1007/s00259-019-04433-1.
    1. Tsuyuguchi N., Terakawa Y., Uda T., Nakajo K., Kanemura Y. Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging with (18)F-fluciclovine: A Comparative Study with L-methyl-(11)C-methionine PET Imaging. Asia Ocean. J. Nucl. Med. Biol. 2017;5:85–94. doi: 10.22038/aojnmb.2017.8843.
    1. Galldiks N., Ullrich R., Schroeter M., Fink G.R., Jacobs A.H., Kracht L.W. Volumetry of [(11)C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:84–92. doi: 10.1007/s00259-009-1219-5.
    1. Grosu A.L., Astner S.T., Riedel E., Nieder C., Wiedenmann N., Heinemann F., Schwaiger M., Molls M., Wester H.J., Weber W.A. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011;81:1049–1058. doi: 10.1016/j.ijrobp.2010.07.002.
    1. Becherer A., Karanikas G., Szabo M., Zettinig G., Asenbaum S., Marosi C., Henk C., Wunderbaldinger P., Czech T., Wadsak W., et al. Brain tumour imaging with PET: A comparison between [18F]fluorodopa and [11C]methionine. Eur. J. Nucl. Med. Mol. Imaging. 2003;30:1561–1567. doi: 10.1007/s00259-003-1259-1.
    1. Kratochwil C., Combs S.E., Leotta K., Afshar-Oromieh A., Rieken S., Debus J., Haberkorn U., Giesel F.L. Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol. 2014;16:434–440. doi: 10.1093/neuonc/not199.
    1. Lapa C., Linsenmann T., Monoranu C.M., Samnick S., Buck A.K., Bluemel C., Czernin J., Kessler A.F., Homola G.A., Ernestus R.I., et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J. Nucl. Med. 2014;55:1611–1616. doi: 10.2967/jnumed.114.140608.
    1. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1.
    1. Louis D.N., Ohgaki H., Wiestler O.D., Cavenee W.K., Burger P.C., Jouvet A., Scheithauer B.W., Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. doi: 10.1007/s00401-007-0243-4.
    1. Pichler R., Dunzinger A., Wurm G., Pichler J., Weis S., Nussbaumer K., Topakian R., Aigner R.M. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur. J. Nucl. Med. Mol. Imaging. 2010;37:1521–1528. doi: 10.1007/s00259-010-1457-6.
    1. Hutterer M., Nowosielski M., Putzer D., Jansen N.L., Seiz M., Schocke M., McCoy M., Gobel G., la Fougere C., Virgolini I.J., et al. [18F]-fluoro-ethyl-L-tyrosine PET: A valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol. 2013;15:341–351. doi: 10.1093/neuonc/nos300.
    1. Jansen N.L., Graute V., Armbruster L., Suchorska B., Lutz J., Eigenbrod S., Cumming P., Bartenstein P., Tonn J.C., Kreth F.W., et al. MRI-suspected low-grade glioma: Is there a need to perform dynamic FET PET? Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1021–1029. doi: 10.1007/s00259-012-2109-9.
    1. Werner J.M., Stoffels G., Lichtenstein T., Borggrefe J., Lohmann P., Ceccon G., Shah N.J., Fink G.R., Langen K.J., Kabbasch C., et al. Differentiation of treatment-related changes from tumour progression: A direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1889–1901. doi: 10.1007/s00259-019-04384-7.
    1. Kebir S., Fimmers R., Galldiks N., Schafer N., Mack F., Schaub C., Stuplich M., Niessen M., Tzaridis T., Simon M., et al. Late Pseudoprogression in Glioblastoma: Diagnostic Value of Dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin. Cancer Res. 2016;22:2190–2196. doi: 10.1158/1078-0432.CCR-15-1334.
    1. Popperl G., Gotz C., Rachinger W., Gildehaus F.J., Tonn J.C., Tatsch K. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Mol. Imaging. 2004;31:1464–1470. doi: 10.1007/s00259-004-1590-1.
    1. Rachinger W., Goetz C., Popperl G., Gildehaus F.J., Kreth F.W., Holtmannspotter M., Herms J., Koch W., Tatsch K., Tonn J.C. Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery. 2005;57:505–511. doi: 10.1227/01.NEU.0000171642.49553.B0.
    1. Mihovilovic M.I., Kertels O., Hanscheid H., Lohr M., Monoranu C.M., Kleinlein I., Samnick S., Kessler A.F., Linsenmann T., Ernestus R.I., et al. O-(2-((18)F)fluoroethyl)-L-tyrosine PET for the differentiation of tumour recurrence from late pseudoprogression in glioblastoma. J. Neurol. Neurosurg. Psychiatry. 2019;90:238–239. doi: 10.1136/jnnp-2017-317155.
    1. Mehrkens J.H., Popperl G., Rachinger W., Herms J., Seelos K., Tatsch K., Tonn J.C., Kreth F.W. The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J. Neurooncol. 2008;88:27–35. doi: 10.1007/s11060-008-9526-4.
    1. Jena A., Taneja S., Gambhir A., Mishra A.K., D’Souza M.M., Verma S.M., Hazari P.P., Negi P., Jhadav G.K., Sogani S.K. Glioma Recurrence Versus Radiation Necrosis: Single-Session Multiparametric Approach Using Simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin. Nucl. Med. 2016;41:e228–e236. doi: 10.1097/RLU.0000000000001152.
    1. Pyka T., Hiob D., Preibisch C., Gempt J., Wiestler B., Schlegel J., Straube C., Zimmer C. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur. J. Radiol. 2018;103:32–37. doi: 10.1016/j.ejrad.2018.04.003.
    1. Galldiks N., Stoffels G., Filss C., Rapp M., Blau T., Tscherpel C., Ceccon G., Dunkl V., Weinzierl M., Stoffel M., et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015;17:1293–1300. doi: 10.1093/neuonc/nov088.
    1. Ceccon G., Lohmann P., Stoffels G., Judov N., Filss C.P., Rapp M., Bauer E., Hamisch C., Ruge M.I., Kocher M., et al. Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. 2017;19:281–288. doi: 10.1093/neuonc/now149.
    1. Tsuyuguchi N., Sunada I., Iwai Y., Yamanaka K., Tanaka K., Takami T., Otsuka Y., Sakamoto S., Ohata K., Goto T., et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: Is a differential diagnosis possible? J. Neurosurg. 2003;98:1056–1064. doi: 10.3171/jns.2003.98.5.1056.
    1. Galldiks N., Stoffels G., Filss C.P., Piroth M.D., Sabel M., Ruge M.I., Herzog H., Shah N.J., Fink G.R., Coenen H.H., et al. Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med. 2012;53:1367–1374. doi: 10.2967/jnumed.112.103325.
    1. Lizarraga K.J., Allen-Auerbach M., Czernin J., DeSalles A.A., Yong W.H., Phelps M.E., Chen W. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J. Nucl. Med. 2014;55:30–36. doi: 10.2967/jnumed.113.121418.
    1. Cicone F., Minniti G., Romano A., Papa A., Scaringi C., Tavanti F., Bozzao A., Maurizi Enrici R., Scopinaro F. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:103–111. doi: 10.1007/s00259-014-2886-4.
    1. Terakawa Y., Tsuyuguchi N., Iwai Y., Yamanaka K., Higashiyama S., Takami T., Ohata K. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nucl. Med. 2008;49:694–699. doi: 10.2967/jnumed.107.048082.
    1. Nihashi T., Dahabreh I.J., Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: A meta-analysis. AJNR Am. J. Neuroradiol. 2013;34:944–950. doi: 10.3174/ajnr.A3324.
    1. Minamimoto R., Saginoya T., Kondo C., Tomura N., Ito K., Matsuo Y., Matsunaga S., Shuto T., Akabane A., Miyata Y., et al. Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment. PLoS ONE. 2015;10:e0132515. doi: 10.1371/journal.pone.0132515.
    1. Salber D., Stoffels G., Pauleit D., Oros-Peusquens A.M., Shah N.J., Klauth P., Hamacher K., Coenen H.H., Langen K.J. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J. Nucl. Med. 2007;48:2056–2062. doi: 10.2967/jnumed.107.046615.
    1. Alkonyi B., Barger G.R., Mittal S., Muzik O., Chugani D.C., Bahl G., Robinette N.L., Kupsky W.J., Chakraborty P.K., Juhasz C. Accurate differentiation of recurrent gliomas from radiation injury by kinetic analysis of alpha-11C-methyl-L-tryptophan PET. J. Nucl. Med. 2012;53:1058–1064. doi: 10.2967/jnumed.111.097881.
    1. Henderson F., Brem S., O’Rourke D.M., Nasrallah M., Buch V.P., Young A.J., Doot R.K., Pantel A., Desai A., Bagley S.J., et al. 18F-Fluciclovine PET to distinguish treatment-related effects from disease progression in recurrent glioblastoma: PET fusion with MRI guides neurosurgical sampling. Neurooncol. Pract. 2019 doi: 10.1093/nop/npz068.
    1. Long G.V., Atkinson V., Lo S., Sandhu S., Guminski A.D., Brown M.P., Wilmott J.S., Edwards J., Gonzalez M., Scolyer R.A., et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–681. doi: 10.1016/S1470-2045(18)30139-6.
    1. Galldiks N., Abdulla D.S.Y., Scheffler M., Schweinsberg V., Schlaak M., Kreuzberg N., Landsberg J., Lohmann P., Ceccon G., Werner J.M., et al. Treatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences. J. Clin. Oncol. 2019;37:e13525. doi: 10.1200/JCO.2019.37.15_suppl.e13525.
    1. Kristin Schmitz A., Sorg R.V., Stoffels G., Grauer O.M., Galldiks N., Steiger H.J., Kamp M.A., Langen K.J., Sabel M., Rapp M. Diagnostic impact of additional O-(2-[18F]fluoroethyl)-L-tyrosine ((18)F-FET) PET following immunotherapy with dendritic cell vaccination in glioblastoma patients. Br. J. Neurosurg. 2019 doi: 10.1080/02688697.2019.1639615.
    1. Galldiks N., Werner J.M., Tscherpel C., Fink G.R., Langen K.J. Imaging findings following regorafenib in malignant gliomas: FET PET adds valuable information to anatomical MRI. Neurooncol. Adv. 2019;1 doi: 10.1093/noajnl/vdz038.
    1. Galldiks N., Kracht L.W., Burghaus L., Ullrich R.T., Backes H., Brunn A., Heiss W.D., Jacobs A.H. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol. Imaging. 2010;9:40–46. doi: 10.2310/7290.2010.00002.
    1. Galldiks N., Kracht L.W., Burghaus L., Thomas A., Jacobs A.H., Heiss W.D., Herholz K. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging. 2006;33:516–524. doi: 10.1007/s00259-005-0002-5.
    1. Herholz K., Kracht L.W., Heiss W.D. Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J. Neuroimaging. 2003;13:269–271. doi: 10.1111/j.1552-6569.2003.tb00190.x.
    1. Galldiks N., Langen K.J., Holy R., Pinkawa M., Stoffels G., Nolte K.W., Kaiser H.J., Filss C.P., Fink G.R., Coenen H.H., et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J. Nucl. Med. 2012;53:1048–1057. doi: 10.2967/jnumed.111.098590.
    1. Piroth M.D., Pinkawa M., Holy R., Klotz J., Nussen S., Stoffels G., Coenen H.H., Kaiser H.J., Langen K.J., Eble M.J. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 2011;80:176–184. doi: 10.1016/j.ijrobp.2010.01.055.
    1. Wyss M., Hofer S., Bruehlmeier M., Hefti M., Uhlmann C., Bartschi E., Buettner U.W., Roelcke U. Early metabolic responses in temozolomide treated low-grade glioma patients. J. Neurooncol. 2009;95:87–93. doi: 10.1007/s11060-009-9896-2.
    1. Roelcke U., Wyss M.T., Nowosielski M., Ruda R., Roth P., Hofer S., Galldiks N., Crippa F., Weller M., Soffietti R. Amino acid positron emission tomography to monitor chemotherapy response and predict seizure control and progression-free survival in WHO grade II gliomas. Neuro Oncol. 2016;18:744–751. doi: 10.1093/neuonc/nov282.
    1. Suchorska B., Unterrainer M., Biczok A., Sosnova M., Forbrig R., Bartenstein P., Tonn J.C., Albert N.L., Kreth F.W. (18)F-FET-PET as a biomarker for therapy response in non-contrast enhancing glioma following chemotherapy. J. Neurooncol. 2018;139:721–730. doi: 10.1007/s11060-018-2919-0.
    1. Galldiks N., Rapp M., Stoffels G., Dunkl V., Sabel M., Langen K.J. Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-L-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Mol. Imaging. 2013;12:273–276. doi: 10.2310/7290.2013.00051.
    1. Morana G., Piccardo A., Garre M.L., Nozza P., Consales A., Rossi A. Multimodal magnetic resonance imaging and 18F-L-dihydroxyphenylalanine positron emission tomography in early characterization of pseudoresponse and nonenhancing tumor progression in a pediatric patient with malignant transformation of ganglioglioma treated with bevacizumab. J. Clin. Oncol. 2013;31:e1. doi: 10.1200/JCO.2012.43.6113.
    1. Hutterer M., Nowosielski M., Putzer D., Waitz D., Tinkhauser G., Kostron H., Muigg A., Virgolini I.J., Staffen W., Trinka E., et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J. Nucl. Med. 2011;52:856–864. doi: 10.2967/jnumed.110.086645.
    1. Galldiks N., Rapp M., Stoffels G., Fink G.R., Shah N.J., Coenen H.H., Sabel M., Langen K.-J. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-l-tyrosine PET in comparison to MRI. Eur. J. Nucl. Med. Mol. Imaging. 2012;40:22–33. doi: 10.1007/s00259-012-2251-4.
    1. Galldiks N., Dunkl V., Ceccon G., Tscherpel C., Stoffels G., Law I., Henriksen O.M., Muhic A., Poulsen H.S., Steger J., et al. Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2377–2386. doi: 10.1007/s00259-018-4082-4.
    1. Schwarzenberg J., Czernin J., Cloughesy T.F., Ellingson B.M., Pope W.B., Grogan T., Elashoff D., Geist C., Silverman D.H., Phelps M.E., et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin. Cancer Res. 2014;20:3550–3559. doi: 10.1158/1078-0432.CCR-13-1440.
    1. Stupp R., Taillibert S., Kanner A., Read W., Steinberg D., Lhermitte B., Toms S., Idbaih A., Ahluwalia M.S., Fink K., et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA. 2017;318:2306–2316. doi: 10.1001/jama.2017.18718.
    1. Bosnyak E., Barger G.R., Michelhaugh S.K., Robinette N.L., Amit-Yousif A., Mittal S., Juhasz C. Amino Acid PET Imaging of the Early Metabolic Response During Tumor-Treating Fields (TTFields) Therapy in Recurrent Glioblastoma. Clin. Nucl. Med. 2018;43:176–179. doi: 10.1097/RLU.0000000000001942.
    1. Ceccon G., Lazaridis L., Stoffels G., Rapp M., Weber M., Blau T., Lohmann P., Kebir S., Herrmann K., Fink G.R., et al. Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: Initial experience. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1626–1635. doi: 10.1007/s00259-018-3992-5.
    1. Chen M.K., Baidoo K., Verina T., Guilarte T.R. Peripheral benzodiazepine receptor imaging in CNS demyelination: Functional implications of anatomical and cellular localization. Brain. 2004;127:1379–1392. doi: 10.1093/brain/awh161.
    1. Papadopoulos V., Baraldi M., Guilarte T.R., Knudsen T.B., Lacapere J.J., Lindemann P., Norenberg M.D., Nutt D., Weizman A., Zhang M.R., et al. Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 2006;27:402–409. doi: 10.1016/j.tips.2006.06.005.
    1. Schweitzer P.J., Fallon B.A., Mann J.J., Kumar J.S. PET tracers for the peripheral benzodiazepine receptor and uses thereof. Drug Discov. Today. 2010;15:933–942. doi: 10.1016/j.drudis.2010.08.012.
    1. Su Z., Roncaroli F., Durrenberger P.F., Coope D.J., Karabatsou K., Hinz R., Thompson G., Turkheimer F.E., Janczar K., Du Plessis D., et al. The 18-kDa mitochondrial translocator protein in human gliomas: An 11C-(R)PK11195 PET imaging and neuropathology study. J. Nucl. Med. 2015;56:512–517. doi: 10.2967/jnumed.114.151621.
    1. Su Z., Herholz K., Gerhard A., Roncaroli F., Du Plessis D., Jackson A., Turkheimer F., Hinz R. [(1)(1)C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:1406–1419. doi: 10.1007/s00259-013-2447-2.
    1. Albert N.L., Unterrainer M., Fleischmann D.F., Lindner S., Vettermann F., Brunegraf A., Vomacka L., Brendel M., Wenter V., Wetzel C., et al. TSPO PET for glioma imaging using the novel ligand (18)F-GE-180: First results in patients with glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:2230–2238. doi: 10.1007/s00259-017-3799-9.
    1. Vomacka L., Albert N.L., Lindner S., Unterrainer M., Mahler C., Brendel M., Ermoschkin L., Gosewisch A., Brunegraf A., Buckley C., et al. TSPO imaging using the novel PET ligand [(18)F]GE-180: Quantification approaches in patients with multiple sclerosis. EJNMMI Res. 2017;7:89. doi: 10.1186/s13550-017-0340-x.
    1. Unterrainer M., Mahler C., Vomacka L., Lindner S., Havla J., Brendel M., Boning G., Ertl-Wagner B., Kumpfel T., Milenkovic V.M., et al. TSPO PET with [(18)F]GE-180 sensitively detects focal neuroinflammation in patients with relapsing-remitting multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1423–1431. doi: 10.1007/s00259-018-3974-7.
    1. Sridharan S., Raffel J., Nandoskar A., Record C., Brooks D.J., Owen D., Sharp D., Muraro P.A., Gunn R., Nicholas R. Confirmation of Specific Binding of the 18-kDa Translocator Protein (TSPO) Radioligand [(18)F]GE-180: A Blocking Study Using XBD173 in Multiple Sclerosis Normal Appearing White and Grey Matter. Mol. Imaging Biol. 2019;21:935–944. doi: 10.1007/s11307-019-01323-8.
    1. Unterrainer M., Fleischmann D.F., Diekmann C., Vomacka L., Lindner S., Vettermann F., Brendel M., Wenter V., Ertl-Wagner B., Herms J., et al. Comparison of (18)F-GE-180 and dynamic (18)F-FET PET in high grade glioma: A double-tracer pilot study. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:580–590. doi: 10.1007/s00259-018-4166-1.
    1. Shields A.F., Grierson J.R., Dohmen B.M., Machulla H.J., Stayanoff J.C., Lawhorn-Crews J.M., Obradovich J.E., Muzik O., Mangner T.J. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 1998;4:1334–1336. doi: 10.1038/3337.
    1. van Waarde A., Elsinga P.H. Proliferation markers for the differential diagnosis of tumor and inflammation. Curr. Pharm. Des. 2008;14:3326–3339. doi: 10.2174/138161208786549399.
    1. Saga T., Kawashima H., Araki N., Takahashi J.A., Nakashima Y., Higashi T., Oya N., Mukai T., Hojo M., Hashimoto N., et al. Evaluation of primary brain tumors with FLT-PET: Usefulness and limitations. Clin. Nucl. Med. 2006;31:774–780. doi: 10.1097/01.rlu.0000246820.14892.d2.
    1. Jacobs A.H., Thomas A., Kracht L.W., Li H., Dittmar C., Garlip G., Galldiks N., Klein J.C., Sobesky J., Hilker R., et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J. Nucl. Med. 2005;46:1948–1958.
    1. Li Z., Yu Y., Zhang H., Xu G., Chen L. A meta-analysis comparing 18F-FLT PET with 18F-FDG PET for assessment of brain tumor recurrence. Nucl. Med. Commun. 2015;36:695–701. doi: 10.1097/MNM.0000000000000302.
    1. Chen W., Delaloye S., Silverman D.H., Geist C., Czernin J., Sayre J., Satyamurthy N., Pope W., Lai A., Phelps M.E., et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: A pilot study. J. Clin. Oncol. 2007;25:4714–4721. doi: 10.1200/JCO.2006.10.5825.
    1. Schwarzenberg J., Czernin J., Cloughesy T.F., Ellingson B.M., Pope W.B., Geist C., Dahlbom M., Silverman D.H., Satyamurthy N., Phelps M.E., et al. 3′-deoxy-3′-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J. Nucl. Med. 2012;53:29–36. doi: 10.2967/jnumed.111.092387.
    1. Harris R.J., Cloughesy T.F., Pope W.B., Nghiemphu P.L., Lai A., Zaw T., Czernin J., Phelps M.E., Chen W., Ellingson B.M. 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol. 2012;14:1079–1089. doi: 10.1093/neuonc/nos141.
    1. Nguyen N.C., Yee M.K., Tuchayi A.M., Kirkwood J.M., Tawbi H., Mountz J.M. Targeted Therapy and Immunotherapy Response Assessment with F-18 Fluorothymidine Positron-Emission Tomography/Magnetic Resonance Imaging in Melanoma Brain Metastasis: A Pilot Study. Front. Oncol. 2018;8:18. doi: 10.3389/fonc.2018.00018.
    1. Bell C., Dowson N., Fay M., Thomas P., Puttick S., Gal Y., Rose S. Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: Toward clinical translation. Semin. Nucl. Med. 2015;45:136–150. doi: 10.1053/j.semnuclmed.2014.10.001.
    1. Rasey J.S., Koh W.J., Evans M.L., Peterson L.M., Lewellen T.K., Graham M.M., Krohn K.A. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: A pretherapy study of 37 patients. Int. J. Radiat. Oncol. Biol. Phys. 1996;36:417–428. doi: 10.1016/S0360-3016(96)00325-2.
    1. Rajendran J.G., Krohn K.A. F-18 fluoromisonidazole for imaging tumor hypoxia: Imaging the microenvironment for personalized cancer therapy. Semin. Nucl. Med. 2015;45:151–162. doi: 10.1053/j.semnuclmed.2014.10.006.
    1. Swanson K.R., Chakraborty G., Wang C.H., Rockne R., Harpold H.L., Muzi M., Adamsen T.C., Krohn K.A., Spence A.M. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J. Nucl. Med. 2009;50:36–44. doi: 10.2967/jnumed.108.055467.
    1. Kawai N., Maeda Y., Kudomi N., Miyake K., Okada M., Yamamoto Y., Nishiyama Y., Tamiya T. Correlation of biological aggressiveness assessed by 11C-methionine PET and hypoxic burden assessed by 18F-fluoromisonidazole PET in newly diagnosed glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:441–450. doi: 10.1007/s00259-010-1645-4.
    1. Barajas R.F., Krohn K.A., Link J.M., Hawkins R.A., Clarke J.L., Pampaloni M.H., Cha S. Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine. Biomedicines. 2016;4:24. doi: 10.3390/biomedicines4040024.
    1. Yamaguchi S., Hirata K., Toyonaga T., Kobayashi K., Ishi Y., Motegi H., Kobayashi H., Shiga T., Tamaki N., Terasaka S., et al. Change in 18F-Fluoromisonidazole PET Is an Early Predictor of the Prognosis in the Patients with Recurrent High-Grade Glioma Receiving Bevacizumab Treatment. PLoS ONE. 2016;11:e0167917. doi: 10.1371/journal.pone.0167917.
    1. Piert M., Machulla H.J., Picchio M., Reischl G., Ziegler S., Kumar P., Wester H.J., Beck R., McEwan A.J., Wiebe L.I., et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med. 2005;46:106–113.
    1. Postema E.J., McEwan A.J., Riauka T.A., Kumar P., Richmond D.A., Abrams D.N., Wiebe L.I. Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA) Eur. J. Nucl. Med. Mol. Imaging. 2009;36:1565–1573. doi: 10.1007/s00259-009-1154-5.
    1. Mapelli P., Zerbetto F., Incerti E., Conte G.M., Bettinardi V., Fallanca F., Anzalone N., Di Muzio N., Gianolli L., Picchio M. 18F-FAZA PET/CT Hypoxia Imaging of High-Grade Glioma Before and After Radiotherapy. Clin. Nucl. Med. 2017;42:e525–e526. doi: 10.1097/RLU.0000000000001850.
    1. Ter-Pogossian M.M., Eichling J.O., Davis D.O., Welch M.J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J. Clin. Investig. 1970;49:381–391. doi: 10.1172/JCI106247.
    1. Ludemann L., Warmuth C., Plotkin M., Forschler A., Gutberlet M., Wust P., Amthauer H. Brain tumor perfusion: Comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. Eur. J. Radiol. 2009;70:465–474. doi: 10.1016/j.ejrad.2008.02.012.
    1. Gruner J.M., Paamand R., Kosteljanetz M., Broholm H., Hojgaard L., Law I. Brain perfusion CT compared with (1)(5)O-H(2)O PET in patients with primary brain tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1691–1701. doi: 10.1007/s00259-012-2173-1.
    1. Ogawa T., Uemura K., Shishido F., Yamaguchi T., Murakami M., Inugami A., Kanno I., Sasaki H., Kato T., Hirata K., et al. Changes of cerebral blood flow, and oxygen and glucose metabolism following radiochemotherapy of gliomas: A PET study. J. Comput. Assist. Tomogr. 1988;12:290–297. doi: 10.1097/00004728-198803000-00019.
    1. Mineura K., Yasuda T., Kowada M., Ogawa T., Shishido F., Uemura K. Positron emission tomographic evaluation of radiochemotherapeutic effect on regional cerebral hemocirculation and metabolism in patients with gliomas. J. Neurooncol. 1987;5:277–285. doi: 10.1007/BF00151232.
    1. Jain R.K., di Tomaso E., Duda D.G., Loeffler J.S., Sorensen A.G., Batchelor T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 2007;8:610–622. doi: 10.1038/nrn2175.
    1. Levin V.A., Bidaut L., Hou P., Kumar A.J., Wefel J.S., Bekele B.N., Grewal J., Prabhu S., Loghin M., Gilbert M.R., et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys. 2011;79:1487–1495. doi: 10.1016/j.ijrobp.2009.12.061.
    1. Jansen M.H., Veldhuijzen van Zanten S.E.M., van Vuurden D.G., Huisman M.C., Vugts D.J., Hoekstra O.S., van Dongen G.A., Kaspers G.L. Molecular Drug Imaging: (89)Zr-Bevacizumab PET in Children with Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2017;58:711–716. doi: 10.2967/jnumed.116.180216.
    1. Veldhuijzen van Zanten S.E.M., Sewing A.C.P., van Lingen A., Hoekstra O.S., Wesseling P., Meel M.H., van Vuurden D.G., Kaspers G.J.L., Hulleman E., Bugiani M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J. Nucl. Med. 2018;59:612–615. doi: 10.2967/jnumed.117.197897.
    1. Hsu A.R., Cai W., Veeravagu A., Mohamedali K.A., Chen K., Kim S., Vogel H., Hou L.C., Tse V., Rosenblum M.G., et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J. Nucl. Med. 2007;48:445–454.
    1. Chen K., Cai W., Li Z.B., Wang H., Chen X. Quantitative PET imaging of VEGF receptor expression. Mol. Imaging Biol. 2009;11:15–22. doi: 10.1007/s11307-008-0172-1.
    1. Cai W., Chen K., Mohamedali K.A., Cao Q., Gambhir S.S., Rosenblum M.G., Chen X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med. 2006;47:2048–2056.
    1. Rainer E., Wang H., Traub-Weidinger T., Widhalm G., Fueger B., Chang J., Zhu Z., Marosi C., Haug A., Hacker M., et al. The prognostic value of [(123)I]-vascular endothelial growth factor ([(123)I]-VEGF) in glioma. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2396–2403. doi: 10.1007/s00259-018-4088-y.
    1. Wu Y.L., Ahn M.J., Garassino M.C., Han J.Y., Katakami N., Kim H.R., Hodge R., Kaur P., Brown A.P., Ghiorghiu D., et al. CNS Efficacy of Osimertinib in Patients With T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3) J. Clin. Oncol. 2018;36:2702–2709. doi: 10.1200/JCO.2018.77.9363.
    1. Pusch S., Krausert S., Fischer V., Balss J., Ott M., Schrimpf D., Capper D., Sahm F., Eisel J., Beck A.C., et al. Pan-mutant IDH1 inhibitor BAY 1436032 for effective treatment of IDH1 mutant astrocytoma in vivo. Acta Neuropathol. 2017;133:629–644. doi: 10.1007/s00401-017-1677-y.
    1. Mellinghoff I.K., Penas-Prado M., Peters K.B., Cloughesy T.F., Burris H.A., Maher E.A., Janku F., Cote G.M., Fuente M.I.D.L., Clarke J., et al. Phase 1 study of AG-881, an inhibitor of mutant IDH1/IDH2, in patients with advanced IDH-mutant solid tumors, including glioma. J. Clin. Oncol. 2018;36:2002. doi: 10.1200/JCO.2018.36.15_suppl.2002.
    1. Bublil E.M., Yarden Y. The EGF receptor family: Spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 2007;19:124–134. doi: 10.1016/j.ceb.2007.02.008.
    1. Hatanpaa K.J., Burma S., Zhao D., Habib A.A. Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 2010;12:675–684. doi: 10.1593/neo.10688.
    1. Kelly W.J., Shah N.J., Subramaniam D.S. Management of Brain Metastases in Epidermal Growth Factor Receptor Mutant Non-Small-Cell Lung Cancer. Front. Oncol. 2018;8:208. doi: 10.3389/fonc.2018.00208.
    1. Weber B., Winterdahl M., Memon A., Sorensen B.S., Keiding S., Sorensen L., Nexo E., Meldgaard P. Erlotinib accumulation in brain metastases from non-small cell lung cancer: Visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J. Thorac. Oncol. 2011;6:1287–1289. doi: 10.1097/JTO.0b013e318219ab87.
    1. Tang Y., Hu Y., Liu W., Chen L., Zhao Y., Ma H., Yang J., Yang Y., Liao J., Cai J., et al. A radiopharmaceutical [(89)Zr]Zr-DFO-nimotuzumab for immunoPET with epidermal growth factor receptor expression in vivo. Nucl. Med. Biol. 2019;70:23–31. doi: 10.1016/j.nucmedbio.2019.01.007.
    1. Sun J., Cai L., Zhang K., Zhang A., Pu P., Yang W., Gao S. A pilot study on EGFR-targeted molecular imaging of PET/CT With 11C-PD153035 in human gliomas. Clin. Nucl. Med. 2014;39:e20–e26. doi: 10.1097/RLU.0b013e3182a23b73.
    1. Ulaner G.A., Lyashchenko S.K., Riedl C., Ruan S., Zanzonico P.B., Lake D., Jhaveri K., Zeglis B., Lewis J.S., O’Donoghue J.A. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using (89)Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer. J. Nucl. Med. 2018;59:900–906. doi: 10.2967/jnumed.117.202010.
    1. Tamura K., Kurihara H., Yonemori K., Tsuda H., Suzuki J., Kono Y., Honda N., Kodaira M., Yamamoto H., Yunokawa M., et al. 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med. 2013;54:1869–1875. doi: 10.2967/jnumed.112.118612.
    1. van der Veen E.L., Bensch F., Glaudemans A., Lub-de Hooge M.N., de Vries E.G.E. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat. Rev. 2018;70:232–244. doi: 10.1016/j.ctrv.2018.09.007.
    1. Decazes P., Bohn P. Immunotherapy by Immune Checkpoint Inhibitors and Nuclear Medicine Imaging: Current and Future Applications. Cancers. 2020;12:371. doi: 10.3390/cancers12020371.
    1. Cole E.L., Kim J., Donnelly D.J., Smith R.A., Cohen D., Lafont V., Morin P.E., Huang R.Y., Chow P.L., Hayes W., et al. Radiosynthesis and preclinical PET evaluation of (89)Zr-nivolumab (BMS-936558) in healthy non-human primates. Bioorg. Med. Chem. 2017;25:5407–5414. doi: 10.1016/j.bmc.2017.07.066.
    1. Bensch F., van der Veen E.L., Lub-de Hooge M.N., Jorritsma-Smit A., Boellaard R., Kok I.C., Oosting S.F., Schroder C.P., Hiltermann T.J.N., van der Wekken A.J., et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018;24:1852–1858. doi: 10.1038/s41591-018-0255-8.
    1. Niemeijer A.N., Leung D., Huisman M.C., Bahce I., Hoekstra O.S., van Dongen G., Boellaard R., Du S., Hayes W., Smith R., et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 2018;9:4664. doi: 10.1038/s41467-018-07131-y.
    1. Donnelly D.J., Smith R.A., Morin P., Lipovsek D., Gokemeijer J., Cohen D., Lafont V., Tran T., Cole E.L., Wright M., et al. Synthesis and Biologic Evaluation of a Novel (18)F-Labeled Adnectin as a PET Radioligand for Imaging PD-L1 Expression. J. Nucl. Med. 2018;59:529–535. doi: 10.2967/jnumed.117.199596.
    1. Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi: 10.1038/nature13954.
    1. Pandit-Taskar N., Postow M., Hellmann M., Harding J., Barker C., O’Donoghue J., Ziolkowska M., Ruan S., Lyashchenko S., Tsai F., et al. First-in-human imaging with (89)Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: Preliminary pharmacokinetics, biodistribution, and lesion targeting. J. Nucl. Med. 2019 doi: 10.2967/jnumed.119.229781.
    1. Antonios J.P., Soto H., Everson R.G., Moughon D.L., Wang A.C., Orpilla J., Radu C., Ellingson B.M., Lee J.T., Cloughesy T., et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc. Natl. Acad. Sci. USA. 2017;114:10220–10225. doi: 10.1073/pnas.1706689114.
    1. Nair-Gill E.D., Shu C.J., Radu C.G., Witte O.N. Non-invasive imaging of adaptive immunity using positron emission tomography. Immunol. Rev. 2008;221:214–228. doi: 10.1111/j.1600-065X.2008.00585.x.
    1. Min J.J., Iyer M., Gambhir S.S. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: Adenoviral infection vs stable transfection. Eur. J. Nucl. Med. Mol. Imaging. 2003;30:1547–1560. doi: 10.1007/s00259-003-1238-6.
    1. Keu K.V., Witney T.H., Yaghoubi S., Rosenberg J., Kurien A., Magnusson R., Williams J., Habte F., Wagner J.R., Forman S., et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aag2196.
    1. Yan H., Parsons D.W., Jin G., McLendon R., Rasheed B.A., Yuan W., Kos I., Batinic-Haberle I., Jones S., Riggins G.J., et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 2009;360:765–773. doi: 10.1056/NEJMoa0808710.
    1. Dang L., White D.W., Gross S., Bennett B.D., Bittinger M.A., Driggers E.M., Fantin V.R., Jang H.G., Jin S., Keenan M.C., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–744. doi: 10.1038/nature08617.
    1. Lu C., Ward P.S., Kapoor G.S., Rohle D., Turcan S., Abdel-Wahab O., Edwards C.R., Khanin R., Figueroa M.E., Melnick A., et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–478. doi: 10.1038/nature10860.
    1. Platten M., Schilling D., Bunse L., Wick A., Bunse T., Riehl D., Karapanagiotou-Schenkel I., Harting I., Sahm F., Schmitt A., et al. A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: A first-in-man multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16) J. Clin. Oncol. 2018;36:2001. doi: 10.1200/JCO.2018.36.15_suppl.2001.
    1. Suh C.H., Kim H.S., Paik W., Choi C., Ryu K.H., Kim D., Woo D.C., Park J.E., Jung S.C., Choi C.G., et al. False-Positive Measurement at 2-Hydroxyglutarate MR Spectroscopy in Isocitrate Dehydrogenase Wild-Type Glioblastoma: A Multifactorial Analysis. Radiology. 2019;291:752–762. doi: 10.1148/radiol.2019182200.
    1. Choi C., Ganji S.K., DeBerardinis R.J., Hatanpaa K.J., Rakheja D., Kovacs Z., Yang X.L., Mashimo T., Raisanen J.M., Marin-Valencia I., et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 2012;18:624–629. doi: 10.1038/nm.2682.
    1. Chitneni S.K., Reitman Z.J., Gooden D.M., Yan H., Zalutsky M.R. Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs. Eur. J. Med. Chem. 2016;119:218–230. doi: 10.1016/j.ejmech.2016.04.066.
    1. Chitneni S.K., Yan H., Zalutsky M.R. Synthesis and Evaluation of a (18)F-Labeled Triazinediamine Analogue for Imaging Mutant IDH1 Expression in Gliomas by PET. ACS Med. Chem. Lett. 2018;9:606–611. doi: 10.1021/acsmedchemlett.7b00478.
    1. Chitneni S.K., Reitman Z.J., Spicehandler R., Gooden D.M., Yan H., Zalutsky M.R. Synthesis and evaluation of radiolabeled AGI-5198 analogues as candidate radiotracers for imaging mutant IDH1 expression in tumors. Bioorg. Med. Chem. Lett. 2018;28:694–699. doi: 10.1016/j.bmcl.2018.01.015.
    1. Koyasu S., Shimizu Y., Morinibu A., Saga T., Nakamoto Y., Togashi K., Harada H. Increased (14)C-acetate accumulation in IDH-mutated human glioblastoma: Implications for detecting IDH-mutated glioblastoma with (11)C-acetate PET imaging. J. Neurooncol. 2019;145:441–447. doi: 10.1007/s11060-019-03322-9.
    1. Burger J.A., Kipps T.J. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–1767. doi: 10.1182/blood-2005-08-3182.
    1. Bian X.W., Yang S.X., Chen J.H., Ping Y.F., Zhou X.D., Wang Q.L., Jiang X.F., Gong W., Xiao H.L., Du L.L., et al. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery. 2007;61:570–579. doi: 10.1227/01.NEU.0000290905.53685.A2.
    1. Bailly C., Vidal A., Bonnemaire C., Kraeber-Bodere F., Cherel M., Pallardy A., Rousseau C., Garcion E., Lacoeuille F., Hindre F., et al. Potential for Nuclear Medicine Therapy for Glioblastoma Treatment. Front. Pharmacol. 2019;10:772. doi: 10.3389/fphar.2019.00772.
    1. Lapa C., Luckerath K., Kleinlein I., Monoranu C.M., Linsenmann T., Kessler A.F., Rudelius M., Kropf S., Buck A.K., Ernestus R.I., et al. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics. 2016;6:428–434. doi: 10.7150/thno.13986.
    1. Wernicke A.G., Edgar M.A., Lavi E., Liu H., Salerno P., Bander N.H., Gutin P.H. Prostate-specific membrane antigen as a potential novel vascular target for treatment of glioblastoma multiforme. Arch. Pathol. Lab. Med. 2011;135:1486–1489. doi: 10.5858/arpa.2010-0740-OA.
    1. Schwenck J., Tabatabai G., Skardelly M., Reischl G., Beschorner R., Pichler B., la Fougere C. In vivo visualization of prostate-specific membrane antigen in glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:170–171. doi: 10.1007/s00259-014-2921-5.
    1. Unterrainer M., Niyazi M., Ruf V., Bartenstein P., Albert N.L. The endothelial prostate-specific membrane antigen is highly expressed in gliosarcoma and visualized by [68Ga]-PSMA-11 PET: A theranostic outlook for brain tumor patients? Neuro Oncol. 2017;19:1698–1699. doi: 10.1093/neuonc/nox172.
    1. Rahbar K., Ahmadzadehfar H., Kratochwil C., Haberkorn U., Schafers M., Essler M., Baum R.P., Kulkarni H.R., Schmidt M., Drzezga A., et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017;58:85–90. doi: 10.2967/jnumed.116.183194.

Source: PubMed

3
Tilaa