Food, Eating, and the Gastrointestinal Tract

Dan M Livovsky, Teorora Pribic, Fernando Azpiroz, Dan M Livovsky, Teorora Pribic, Fernando Azpiroz

Abstract

Food ingestion induces a metered response of the digestive system. Initially, the upper digestive system reacts to process and extract meal substrates. Later, meal residues not absorbed in the small bowel, pass into the colon and activate the metabolism of resident microbiota. Food consumption also induces sensations that arise before ingestion (e.g., anticipatory reward), during ingestion (e.g., gustation), and most importantly, after the meal (i.e., the postprandial experience). The postprandial experience involves homeostatic sensations (satiety, fullness) with a hedonic dimension (digestive well-being, mood). The factors that determine the postprandial experience are poorly understood, despite their potential role in personalized diets and healthy eating habits. Current data suggest that the characteristics of the meal (amount, palatability, composition), the activity of the digestive system (suited processing), and the receptivity of the eater (influenced by multiple conditioning factors) may be important in this context.

Keywords: digestion; digestive well-being; food ingestion; satiety.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Digestive response to ingestion. The upper digestive system extracts meal substrates by a process of digestion and absorption. Non-absorbed meal residues pass into the colon and feed the microbiota.
Figure 2
Figure 2
Sensations related to food ingestion. In healthy women (n = 12) a. palatable comfort meal induced homeostatic sensations (satiety, fullness) with pleasant hedonic dimension (increased digestive well-being and mood). Data from reference 79.
Figure 3
Figure 3
Biological responses to food ingestion. Meal ingestion induces digestive and sensory responses. Homeostatic (satiety, fullness) and hedonic sensations (digestive well-being and mood) depend on the characteristics of the meal, the digestive response, and the individual’s receptivity, which can be influenced by multiple conditioning factors. Adapted from reference [1].

References

    1. Pribic T., Azpiroz F. Biogastronomy: Factors that determine the biological response to meal ingestion. Neurogastroenterol. Motil. 2018;30:e13309. doi: 10.1111/nmo.13309.
    1. Deloose E., Tack J. Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G228–G233. doi: 10.1152/ajpgi.00212.2015.
    1. Azpiroz F., Feinle C., Grundy D., Tack J. Gastric sensitivity and reflexes: Basic mechanism underlying clinical problems. J. Gastroenterol. 2014;49:206–218. doi: 10.1007/s00535-013-0917-8.
    1. Boeckxstaens G., Camilleri M., Sifrim D., Houghton L.A., Elsenbruch S., Lindberg G., Azpiroz F., Parkman H.P. Fundamentals of Neurogastroenterology: Physiology/Motility—Sensation. Gastroenterology. 2016;150:1292–1304. doi: 10.1053/j.gastro.2016.02.030.
    1. Bendezu R.A., Mego M., Monclus E., Merino X., Accarino A., Malagelada J.R., Navazo I., Azpiroz F. Colonic content: Effect of diet, meals, and defecation. Neurogastroenterol. Motil. 2017;29:e12930. doi: 10.1111/nmo.12930.
    1. Azpiroz F. Intestinal gas. In: Feldman M., Friedman L.S., Brand L.J., editors. Pathophysiology, Diagnosis, Management. 10th ed. Elsevier; Philadelphia, PA, USA: 2015. pp. 242–250.
    1. Manichanh C., Eck A., Varela E., Roca J., Clemente J.C., Gonzalez A., Knights D., Knight R., Estrella S., Hernandez C., et al. Anal gas evacuation and colonic microbiota in patients with flatulence: Effect of diet. Gut. 2013;63:401–408. doi: 10.1136/gutjnl-2012-303013.
    1. Mego M., Accarino A., Malagelada J.R., Guarner F., Azpiroz F. Accumulative effect of food residues on intestinal gas production. Neurogastroenterol. Motil. 2015;27:1621–1628. doi: 10.1111/nmo.12662.
    1. Burri E., Cisternas D., Villoria A., Accarino A., Soldevilla A., Malagelada J.R., Azpiroz F. Abdominal accommodation induced by meal ingestion: Differential responses to gastric and colonic volume loads. Neurogastroenterol. Mot. 2013;25:339-e253. doi: 10.1111/nmo.12068.
    1. Burri E., Barba E., Huaman J.W., Cisternas D., Accarino A., Soldevilla A., Malagelada J.R., Azpiroz F. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia. Gut. 2014;63:395–400. doi: 10.1136/gutjnl-2013-304574.
    1. Vanis L., Gentilcore D., Lange K., Gilja O.H., Rigda R.S., Trahair L.G., Feinle-Bisset C., Rayner C.K., Horowitz M., Jones K.L. Effects of variations in intragastric volume on blood pressure and splanchnic blood flow during intraduodenal glucose infusion in healthy older subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302:R391–R399. doi: 10.1152/ajpregu.00464.2011.
    1. Malagelada C., Accarino A., Molne L., Mendez S., Campos E., Gonzalez A., Malagelada J.R., Azpiroz F. Digestive, cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2015;27:389–396. doi: 10.1111/nmo.12504.
    1. Malagelada C., Barba I., Accarino A., Molne L., Mendez S., Campos E., Gonzalez A., Alonso-Cotoner C., Santos J., Malagelada J.R., et al. Cognitive and hedonic responses to meal ingestion correlate with changes in circulating metabolites. Neurogastroenterol. Motil. 2016;28:1806–1814. doi: 10.1111/nmo.12879.
    1. Ciccantelli B., Pribic T., Malagelada C., Accarino A., Azpiroz F. Relation between cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017;29:e13011. doi: 10.1111/nmo.13011.
    1. Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology. 2015;148:1219–1233. doi: 10.1053/j.gastro.2014.09.016.
    1. Blundell J., de Graaf C., Hulshof T., Jebb S., Livingstone B., Lluch A., Mela D., Salah S., Schuring E., van der Knaap H., et al. Appetite control: Methodological aspects of the evaluation of foods. Obes. Rev. 2010;11:251–270. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. Feinle-Bisset C. Upper gastrointestinal sensitivity to meal-related signals in adult humans—Relevance to appetite regulation and gut symptoms in health, obesity and functional dyspepsia. Physiol. Behav. 2016;162:69–82. doi: 10.1016/j.physbeh.2016.03.021.
    1. Egecioglu E., Skibicka K.P., Hansson C., Alvarez-Crespo M., Friberg P.A., Jerlhag E., Engel J.A., Dickson S.L. Hedonic and incentive signals for body weight control. Rev. Endocr. Metab. Disord. 2011;12:141–151. doi: 10.1007/s11154-011-9166-4.
    1. Weltens N., Zhao D., Van Oudenhove L. Where is the comfort in comfort foods? Mechanisms linking fat signaling, reward, and emotion. Neurogastroenterol Motil. 2014;26:303–315. doi: 10.1111/nmo.12309.
    1. Pribic T., Kilpatrick L., Ciccantelli B., Malagelada C., Accarino A., Rovira A., Pareto D., Mayer E., Azpiroz F. Brain networks associated with cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2017;29:e13031. doi: 10.1111/nmo.13031.
    1. Li J., An R., Zhang Y., Li X., Wang S. Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am. J. Clin. Nutr. 2012;96:275–282. doi: 10.3945/ajcn.112.037440.
    1. Page K.A., Chan O., Arora J., Belfort-Deaguiar R., Dzuira J., Roehmholdt B., Cline G.W., Naik S., Sinha R., Constable R.T., et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA. 2013;309:63–70. doi: 10.1001/jama.2012.116975.
    1. Frank S., Linder K., Kullmann S., Heni M., Ketterer C., Cavusoglu M., Krzeminski A., Fritsche A., Häring H.U., Preissl H., et al. Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. Am. J. Clin. Nutr. 2012;95:1342–1349. doi: 10.3945/ajcn.111.031492.
    1. Francis S.T., Eldeghaidy S. Imaging methodologies and applications for nutrition research: What can functional MRI offer? Proc. Nutr. Soc. 2015;74:89–98. doi: 10.1017/S0029665114001530.
    1. Lee I.S., Preissl H., Enck P. How to Perform and Interpret Functional Magnetic Resonance Imaging Studies in Functional Gastrointestinal Disorders. J. Neurogastroenterol. Motil. 2017;23:197–207. doi: 10.5056/jnm16196.
    1. Ly H.G., Dupont P., Van Laere K., Depoortere I., Tack J., Van Oudenhove L. Differential brain responses to gradual intragastric nutrient infusion and gastric balloon distension: A role for gut peptides? Neuroimage. 2017;144:101–112. doi: 10.1016/j.neuroimage.2016.09.032.
    1. Simon J.J., Wetzel A., Sinno M.H., Skunde M., Bendszus M., Preissl H., Enck P., Herzog W., Friederich H.C. Integration of homeostatic signaling and food reward processing in the human brain. JCI Insight. 2017:2. doi: 10.1172/jci.insight.92970.
    1. Zanchi D., Depoorter A., Egloff L., Haller S., Mahlmann L., Lang U.E., Drewe J., Beglinger C., Schmidt A., Borgwardt S. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci. Biobehav. Rev. 2017;80:457–475. doi: 10.1016/j.neubiorev.2017.06.013.
    1. Astarita G., Langridge J. An emerging role for metabolomics in nutrition science. J. Nutr. Nutr. 2013;6:181–200. doi: 10.1159/000354403.
    1. Bondia-Pons I., Canellas N., Abete I., Rodriguez M.A., Perez-Cornago A., Navas-Carretero S., Zulet M.A., Correig X., Martínez J.A. Nutri-metabolomics: Subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces. Omics. 2013;17:611–618. doi: 10.1089/omi.2013.0027.
    1. De Vadder F., Kovatcheva-Datchary P., Goncalves D., Vinera J., Zitoun C., Duchampt A., Bäckhed A., Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96. doi: 10.1016/j.cell.2013.12.016.
    1. Lyte M. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 2014;5:381–389. doi: 10.4161/gmic.28682.
    1. Mayer E.A., Hsiao E.Y. The Gut and Its Microbiome as Related to Central Nervous System Functioning and Psychological Well-being: Introduction to the Special Issue of Psychosomatic Medicine. Psychosom. Med. 2017;79:844–846. doi: 10.1097/PSY.0000000000000525.
    1. Smeets P.A., Erkner A., De Graaf C. Cephalic phase responses and appetite. Nutr. Rev. 2010;68:643–655. doi: 10.1111/j.1753-4887.2010.00334.x.
    1. Berridge K.C. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol. Behav. 2009;97:537–550. doi: 10.1016/j.physbeh.2009.02.044.
    1. Finlayson G., King N., Blundell J. The role of implicit wanting in relation to explicit liking and wanting for food: Implications for appetite control. Appetite. 2008;50:120–127. doi: 10.1016/j.appet.2007.06.007.
    1. Phan U.T., Chambers E.T. Motivations for choosing various food groups based on individual foods. Appetite. 2016;105:204–211. doi: 10.1016/j.appet.2016.05.031.
    1. Mela D.J. Determinants of food choice: Relationships with obesity and weight control. Obes. Res. 2001;9:249S–255S. doi: 10.1038/oby.2001.127.
    1. Mela D.J. Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite. 2006;47:10–17. doi: 10.1016/j.appet.2006.02.006.
    1. Lutter M., Nestler E.J. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr. 2009;139:629–632. doi: 10.3945/jn.108.097618.
    1. Schultes B., Ernst B., Wilms B., Thurnheer M., Hallschmid M. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am. J. Clin. Nutr. 2010;92:277–283. doi: 10.3945/ajcn.2009.29007.
    1. Witt A.A., Lowe M.R. Hedonic hunger and binge eating among women with eating disorders. Int. J. Eat. Disord. 2014;47:273–280. doi: 10.1002/eat.22171.
    1. Small D.M. Flavor is in the brain. Physiol. Behav. 2012;107:540–552. doi: 10.1016/j.physbeh.2012.04.011.
    1. Auvray M., Spence C. The multisensory perception of flavor. Conscious. Cogn. 2008;17:1016–1031. doi: 10.1016/j.concog.2007.06.005.
    1. Lindemann B. Receptors and transduction in taste. Nature. 2001;413:219–225. doi: 10.1038/35093032.
    1. Pandurangan M., Hwang I. Systemic mechanism of taste, flavour and palatability in brain. Appl. Biochem. Biotechnol. 2015;175:3133–3147. doi: 10.1007/s12010-015-1488-3.
    1. Chaudhari N., Roper S.D. The cell biology of taste. J. Cell Biol. 2010;190:285–296. doi: 10.1083/jcb.201003144.
    1. Lawless H.T., Stevens D.A., Chapman K.W., Kurtz A. Metallic taste from electrical and chemical stimulation. Chem. Senses. 2005;30:185–194. doi: 10.1093/chemse/bji014.
    1. Reed D.R. Birth of a new breed of supertaster. Chem. Senses. 2008;33:489–491. doi: 10.1093/chemse/bjn031.
    1. Robino A., Mezzavilla M., Pirastu N., Dognini M., Tepper B.J., Gasparini P. A population-based approach to study the impact of PROP perception on food liking in populations along the Silk Road. PLoS ONE. 2014;9:e91716. doi: 10.1371/journal.pone.0091716.
    1. Deloose E., Corsetti M., Van Oudenhove L., Depoortere I., Tack J. Intragastric infusion of the bitter tastant quinine suppresses hormone release and antral motility during the fasting state in healthy female volunteers. Neurogastroenterol. Motil. 2018;30:e13171. doi: 10.1111/nmo.13171.
    1. Avau B., Rotondo A., Thijs T., Andrews C.N., Janssen P., Tack J., Depoortere I. Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation. Sci. Rep. 2015;5:15985. doi: 10.1038/srep15985.
    1. Cvijanovic N., Isaacs N.J., Rayner C.K., Feinle-Bisset C., Young R.L., Little T.J. Lipid stimulation of fatty acid sensors in the human duodenum: Relationship with gastrointestinal hormones, BMI and diet. Int. J. Obes. 2017;41:233–239. doi: 10.1038/ijo.2016.199.
    1. Depoortere I. Taste receptors of the gut: Emerging roles in health and disease. Gut. 2014;63:179–190. doi: 10.1136/gutjnl-2013-305112.
    1. Delwiche J. The impact of perceptual interactions on perceived flavor. Food Qual. Prefer. 2004;15:137–146. doi: 10.1016/S0950-3293(03)00041-7.
    1. Doty R.L. Olfaction. Annu. Rev. Psychol. 2001;52:423–452. doi: 10.1146/annurev.psych.52.1.423.
    1. Barham P., Skibsted L.H., Bredie W.L., Frost M.B., Moller P., Risbo J., Snitkjær P., Mortensen L.M. Molecular gastronomy: A new emerging scientific discipline. Chem. Rev. 2010;110:2313–2365. doi: 10.1021/cr900105w.
    1. Gilad Y., Lancet D. Population differences in the human functional olfactory repertoire. Mol. Biol. Evol. 2003;20:307–314. doi: 10.1093/molbev/msg013.
    1. DuBose C., Cardello A., Maller O. Effects of colorants and flavorants on identification, perceived flavor intensity, and hedonic quality of fruit-flavored beverages and cake. J. Food Sci. 1980;45:1393–1399. doi: 10.1111/j.1365-2621.1980.tb06562.x.
    1. Yeomans M.R. Taste, palatability and the control of appetite. Proc. Nutr. Soc. 1998;57:609–615. doi: 10.1079/PNS19980089.
    1. Sauer H., Ohla K., Dammann D., Teufel M., Zipfel S., Enck P., Mack I. Changes in Gustatory Function and Taste Preference Following Weight Loss. J. Pediatr. 2017;182:120–126. doi: 10.1016/j.jpeds.2016.11.055.
    1. Sorensen L.B., Moller P., Flint A., Martens M., Raben A. Effect of sensory perception of foods on appetite and food intake: A review of studies on humans. Int. J. Obes. Relat. Metab. Disord. 2003;27:1152–1166. doi: 10.1038/sj.ijo.0802391.
    1. Monrroy H., Pribic T., Galan C., Nieto A., Amigo N., Accarino A., Correig X., Azpiroz F. Meal Enjoyment and Tolerance in Women and Men. Nutrients. 2019;11:119. doi: 10.3390/nu11010119.
    1. Pribic T., Hernandez L., Nieto A., Malagelada C., Accarino A., Azpiroz F. Effects of meal palatability on postprandial sensations. Neurogastroenterol. Motil. 2018;30:e13197. doi: 10.1111/nmo.13197.
    1. Pribic T., Vilaseca H., Nieto A., Hernandez L., Monrroy H., Malagelada C., Accarino A., Roca J., Azpiroz F. Meal composition influences postprandial sensations independently of valence and gustation. Neurogastroenterol. Motil. 2018;30:e13337. doi: 10.1111/nmo.13337.
    1. Masihy M., Monrroy H., Borghi G., Pribic T., Galan C., Nieto A., Accarino A., Azpiroz F. Influence of Eating Schedule on the Postprandial Response: Gender Differences. Nutrients. 2019;11:401. doi: 10.3390/nu11020401.
    1. Pribic T., Nieto A., Hernandez L., Malagelada C., Accarino A., Azpiroz F. Appetite influences the responses to meal ingestion. Neurogastroenterol. Motil. 2017:29. doi: 10.1111/nmo.13072.
    1. Pribic T., Vilaseca H., Nieto A., Hernandez L., Malagelada C., Accarino A., Roca J., Azpiroz F. Education of the postprandial experience by a sensory-cognitive intervention. Neurogastroenterol. Motil. 2018:30. doi: 10.1111/nmo.13197.
    1. Tack J., Deloose E., Ang D., Scarpellini E., Vanuytsel T., Van Oudenhove L., Depoortere I. Motilin-induced gastric contractions signal hunger in man. Gut. 2016;65:214–224. doi: 10.1136/gutjnl-2014-308472.
    1. Halawi H., Camilleri M., Acosta A., Vazquez-Roque M., Oduyebo I., Burton D., Busciglio I., Zinsmeister A.R. Relationship of gastric emptying or accommodation with satiation, satiety, and postprandial symptoms in health. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313:G442–G447. doi: 10.1152/ajpgi.00190.2017.
    1. Feinle C., Azpiroz F. Dietary and life-style factors in funcional dyspepsia. Nat. Rev. Gastroenterol. Hepatol. 2013;10:150–157. doi: 10.1038/nrgastro.2012.246.
    1. Feinle C., Azpiroz F. Dietary lipids and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013;108:737–747. doi: 10.1038/ajg.2013.76.
    1. Hajishafiee M., Bitarafan V., Feinle-Bisset C. Gastrointestinal Sensing of Meal-Related Signals in Humans, and Dysregulations in Eating-Related Disorders. Nutrients. 2019;11:1298. doi: 10.3390/nu11061298.
    1. Monrroy H., Borghi G., Pribic T., Galan C., Nieto A., Amigo N., Accarino A., Correig X., Azpiroz F. Biological Response to Meal Ingestion: Gender Differences. Nutrients. 2019;11:702. doi: 10.3390/nu11030702.

Source: PubMed

3
Tilaa