Diabetic Retinopathy: Vascular and Inflammatory Disease

F Semeraro, A Cancarini, R dell'Omo, S Rezzola, M R Romano, C Costagliola, F Semeraro, A Cancarini, R dell'Omo, S Rezzola, M R Romano, C Costagliola

Abstract

Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.

Figures

Figure 1
Figure 1
The role of innate immunity in diabetic retinopathy and type 2 diabetes mellitus. In patients with type 2 diabetes and diabetic retinopathy, innate immune markers and proinflammatory cytokines, including IL-1β, IL-6, IL-8, TNF-α, and prostaglandin E2, are upregulated. The cytokines then enter systemic circulation and contribute to the diabetic pathology by increasing insulin resistance and by elevating blood glucose levels.
Figure 2
Figure 2
Role of vitreous mediators in DR progression. In DR, several inflammatory vitreous mediators are upregulated and induce anatomical changes in the retinal tissue. The structural changes enhance retinal tissue degeneration and mediate pathogenesis of DR.

References

    1. Diabetes Atlas. 5th. 2014. .
    1. Barot M., Gokulgandhi M. R., Patel S., Mitra A. K. Microvascular complications and diabetic retinopathy: recent advances and future implications. Future Medicinal Chemistry. 2013;5(3):301–314. doi: 10.4155/fmc.12.206.
    1. Durham J. T., Herman I. M. Microvascular modifications in diabetic retinopathy. Current Diabetes Reports. 2011;11(4):253–264. doi: 10.1007/s11892-011-0204-0.
    1. Beltramo E., Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Current Medicinal Chemistry. 2013;20(26):3218–3225. doi: 10.2174/09298673113209990022.
    1. Goldberg R. B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. Journal of Clinical Endocrinology and Metabolism. 2009;94(9):3171–3182. doi: 10.1210/jc.2008-2534.
    1. Dell'Omo R., Semeraro F., Bamonte G., Cifariello F., Romano M. R., Costagliola C. Vitreous mediators in retinal hypoxic diseases. Mediators of Inflammation. 2013;2013:16. doi: 10.1155/2013/935301.935301
    1. Sone H., Kawakami Y., Okuda Y., et al. Vascular endothelial growth factor is induced by long-term high glucose concentration and up-regulated by acute glucose deprivation in cultured bovine retinal pigmented epithelial cells. Biochemical and Biophysical Research Communications. 1996;221(1):193–198. doi: 10.1006/bbrc.1996.0568.
    1. Costagliola C. Oxidative state of glutathione in red blood cells and plasma of diabetic patients: in vivo and in vitro study. Clinical Physiology and Biochemistry. 1990;8(4):204–210.
    1. Ellis T. P., Choudhury R. H., Kaul K., et al. Diabetic retinopathy and atherosclerosis: is there a link? Current Diabetes Reviews. 2013;9(2):146–160.
    1. Costagliola C., Romano V., de Tollis M., et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators of Inflammation. 2013;2013:6. doi: 10.1155/2013/629529.629529
    1. Semeraro F., Cancarini A., Morescalchi F., et al. Serum and intraocular concentrations of erythropoietin and vascular endothelial growth factor in patients with type 2 diabetes and proliferative retinopathy. Diabetes and Metabolism. 2014;40:445–451. doi: 10.1016/j.diabet.2014.04.005.
    1. Cancarini A., Costagliola C., dell’Omo R., et al. Effect of intravitreal bevacizumab on serum, aqueous, and vitreous humor levels of erythropoietin in patients with proliferative diabetic retinopathy. Minerva Endocrinologica. 2014;39:305–311.
    1. Costagliola C., Daniele A., dell'Omo R., et al. Aqueous humor levels of vascular endothelial growth factor and adiponectin in patients with type 2 diabetes before and after intravitreal bevacizumab injection. Experimental Eye Research. 2013;110:50–54. doi: 10.1016/j.exer.2013.02.004.
    1. Tarr J. M., Kaul K., Chopra M., Kohner E. M., Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmology. 2013;2013:13. doi: 10.1155/2013/343560.343560
    1. Abcouwer S. F. Angiogenic factors and cytokines in diabetic retinopathy. Journal of Clinical & Cellular Immunology. 2013;11:1–12. doi: 10.4172/2155-9899.s1-011.
    1. Tang J., Kern T. S. Inflammation in diabetic retinopathy. Progress in Retinal and Eye Research. 2011;30(5):343–358. doi: 10.1016/j.preteyeres.2011.05.002.
    1. Patel J. I., Saleh G. M., Hykin P. G., Gregor Z. J., Cree I. A. Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye. 2008;22(2):223–228. doi: 10.1038/sj.eye.6702584.
    1. Hernàndez C., Segura R. M., Fonollosa A., Carrasco E., Francisco G., Simó R. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabetic Medicine. 2005;22(6):719–722. doi: 10.1111/j.1464-5491.2005.01538.x.
    1. Funatsu H., Yamashita H., Noma H., et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefe's Archive for Clinical and Experimental Ophthalmology. 2005;243(1):3–8. doi: 10.1007/s00417-004-0950-7.
    1. Murugeswari P., Shukla D., Rajendran A., Kim R., Namperumalsamy P., Muthukkaruppan V. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales' disease. Retina. 2008;28(6):817–824. doi: 10.1097/IAE.0b013e31816576d5.
    1. Simó-Servat O., Hernández C., Simó R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators of Inflammation. 2012;2012:11. doi: 10.1155/2012/872978.872978
    1. Dal Monte M., Rezzola S., Cammalleri M., et al. Anti-angiogenic effectiveness of the urokinase receptor-derived peptide UPARANT in a model of oxygen induced retinopathy. Investigative Ophthalmology & Visual Science. 2015 doi: 10.1167/iovs.14-16323.
    1. Rezzola S., Monte M. D., Belleri M., et al. Therapeutic potential of anti-angiogenic multi-target N,O-sulfated E. Coli K5 polysaccharide in diabetic retinopathy. Diabetes. 2015 doi: 10.2337/db14-1378.
    1. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–820. doi: 10.1038/414813a.
    1. Gologorsky D., Thanos A., Vavvas D. Therapeutic interventions against inflammatory and angiogenic mediators in proliferative diabetic retinopathy. Mediators of Inflammation. 2012;2012:10. doi: 10.1155/2012/629452.629452
    1. Esposito K., Nappo F., Marfella R., et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067–2072. doi: 10.1161/.
    1. Lim S. K., Park S. H. High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cells. Laboratory Animal Research. 2011;27(3):245–250. doi: 10.5625/lar.2011.27.3.245.
    1. Yoshida S., Yoshida A., Ishibashi T. Induction of IL-8, MPC-1, and bFGF by TNF-α in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefe's Archive for Clinical and Experimental Ophthalmology. 2004;242(5):409–413. doi: 10.1007/s00417-004-0874-2.
    1. Caldwell R. B., Bartoli M., Behzadian M. A., et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes/Metabolism Research and Reviews. 2003;19(6):442–455. doi: 10.1002/dmrr.415.
    1. Khan Z. A., Chakrabarti S. Growth factors in proliferative diabetic retinopathy. Experimental Diabesity Research. 2003;4(4):287–301. doi: 10.1155/EDR.2003.287.
    1. Semeraro F., Cancarini A., Forbice E., et al. Erythropoietin and diabetic retinopathy. Journal of Diabetes & Metabolism. 2013;4, article 2
    1. Zijlstra A., Seandel M., Kupriyanova T. A., et al. Proangiogenic role of neutrophil-like inflammatory heterophils during neovascularization induced by growth factors and human tumor cells. Blood. 2006;107(1):317–327. doi: 10.1182/blood-2005-04-1458.
    1. Newton K., Dixit V. M. Signaling in innate immunity and inflammation. Cold Spring Harbor Perspectives in Biology. 2012;4(3) doi: 10.1101/cshperspect.a006049.
    1. Speyer C. L., Ward P. A. Role of endothelial chemokines and their receptors during inflammation. Journal of Investigative Surgery. 2011;24(1):18–27. doi: 10.3109/08941939.2010.521232.
    1. Sprague A. H., Khalil R. A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochemical Pharmacology. 2009;78(6):539–552. doi: 10.1016/j.bcp.2009.04.029.
    1. Williams C. S., Mann M., DuBois R. N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18(55):7908–7916.
    1. Romagnani P., Lasagni L., Annunziato F., Serio M., Romagnani S. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends in Immunology. 2004;25(4):201–209. doi: 10.1016/j.it.2004.02.006.
    1. Voronov E., Shouval D. S., Krelin Y., et al. IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(5):2645–2650. doi: 10.1073/pnas.0437939100.
    1. Naldini A., Leali D., Pucci A., et al. Cutting edge: IL-1β mediates the proangiogenic activity of osteopontin-activated human monocytes. Journal of Immunology. 2006;177(7):4267–4270. doi: 10.4049/jimmunol.177.7.4267.
    1. Leali D., Dell'Era P., Stabile H., et al. Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. The Journal of Immunology. 2003;171(2):1085–1093. doi: 10.4049/jimmunol.171.2.1085.
    1. Aplin A. C., Gelati M., Fogel E., Carnevale E., Nicosia R. F. Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiological Genomics. 2006;27(1):20–28. doi: 10.1152/physiolgenomics.00048.2006.
    1. Angelo L. S., Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clinical Cancer Research. 2007;13(10):2825–2830. doi: 10.1158/1078-0432.CCR-06-2416.
    1. Zheng L., Howell S. J., Hatala D. A., Huang K., Kern T. S. Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes. 2007;56:337–345. doi: 10.2337/db06-0789.
    1. Agrawal N. K. Targeting inflammation in diabetes: newer therapeutic options. World Journal of Diabetes. 2014;5(5):697–710. doi: 10.4239/wjd.v5.i5.697.
    1. Adamis A. P. Is diabetic retinopathy an inflammatory disease? British Journal of Ophthalmology. 2002;86(4):363–365. doi: 10.1136/bjo.86.4.363.
    1. Ishida S., Usui T., Yamashiro K., et al. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. Journal of Experimental Medicine. 2003;198(3):483–489. doi: 10.1084/jem.20022027.
    1. Cheng T., Cao W., Wen R., Steinberg R. H., LaVail M. M. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Investigative Ophthalmology and Visual Science. 1998;39(3):581–591.
    1. Bhagat N., Grigorian R. A., Tutela A., Zarbin M. A. Diabetic macular edema: pathogenesis and treatment. Survey of Ophthalmology. 2009;54(1):1–32. doi: 10.1016/j.survophthal.2008.10.001.
    1. Moore T. C., Moore J. E., Kaji Y., et al. The role of advanced glycation end products in retinal microvascular leukostasis. Investigative Ophthalmology & Visual Science. 2003;44(10):4457–4464. doi: 10.1167/iovs.02-1063.
    1. Joussen A. M., Poulaki V., Le M. L., et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB Journal. 2004;18(12):1450–1452. doi: 10.1096/fj.03-1476fje.
    1. Kaji Y., Usui T., Ishida S., et al. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Investigative Ophthalmology and Visual Science. 2007;48(2):858–865. doi: 10.1167/iovs.06-0495.
    1. Zhang X., Zeng H., Bao S., Wang N., Gillies M. C. Diabetic macular edema: new concepts in patho-physiology and treatment. Cell & Bioscience. 2014;4, article 27 doi: 10.1186/2045-3701-4-27.
    1. Noma H., Mimura T., Yasuda K., Shimura M. Role of inflammation in diabetic macular edema. Ophthalmologica. 2014;232(3):127–135. doi: 10.1159/000364955.
    1. Mitamura Y., Harada C., Harada T. Role of cytokines and trophic factors in the pathogenesis of diabetic retinopathy. Current Diabetes Reviews. 2005;1(1):73–81. doi: 10.2174/1573399052952596.
    1. Morescalchi F., Duse S., Gambicorti E., Romano M. R., Costagliola C., Semeraro F. Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediators of Inflammation. 2013;2013:12. doi: 10.1155/2013/269787.269787
    1. Bry M., Kivela R., Leppanev V. M., Alitao K. Vascular endothelial growth factor-B in physiology and disease. Physiological Reviews. 2014;94:779–794. doi: 10.1152/physrev.00028.2013.
    1. Takahashi H., Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science. 2005;109(3):227–241. doi: 10.1042/cs20040370.
    1. Hiratsuka S., Kataoka Y., Nakao K., et al. Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Molecular and Cellular Biology. 2005;25(1):355–363. doi: 10.1128/MCB.25.1.355-363.2005.
    1. Sakurai Y., Ohgimoto K., Kataoka Y., Yoshida N., Shibuya M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(4):1076–1081. doi: 10.1073/pnas.0404984102.
    1. Carmeliet P., Moons L., Luttun A., et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Medicine. 2001;7(5):575–583. doi: 10.1038/87904.
    1. Dull R. O., Yuan J., Chang Y. S., Tarbell J., Jain R. K., Munn L. L. Kinetics of placenta growth factor/vascular endothelial growth factor synergy in endothelial hydraulic conductivity and proliferation. Microvascular Research. 2001;61(2):203–210. doi: 10.1006/mvre.2000.2298.
    1. Levy A. P., Levy N. S., Wegner S., Goldberg M. A. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. The Journal of Biological Chemistry. 1995;270(22):13333–13340. doi: 10.1074/jbc.270.22.13333.
    1. Stein I., Neeman M., Shweiki D., Itin A., Keshet E. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Molecular and Cellular Biology. 1995;15(10):5363–5368.
    1. Melder R. J., Koenig G. C., Witwer B. P., Safabakhsh N., Munn L. L., Jain R. K. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Medicine. 1996;2(9):992–997. doi: 10.1038/nm0996-992.
    1. Wang J., Xu E., Elliott M. H., Zhu M., Le Y.-Z. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010;59(9):2297–2305. doi: 10.2337/db09-1420.
    1. Clermont A. C., Aiello L. P., Mori F., Aiello L. M., Bursell S.-E. Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. American Journal of Ophthalmology. 1997;124(4):433–446. doi: 10.1016/s0002-9394(14)70860-8.
    1. Adamis A. P., Miller J. W., Bernal M.-T., et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. American Journal of Ophthalmology. 1994;118(4):445–450. doi: 10.1016/s0002-9394(14)75794-0.
    1. Matsunaga N., Chikaraishi Y., Izuta H., et al. Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy. Ophthalmology. 2008;115(11):1916–1922. doi: 10.1016/j.ophtha.2008.06.025.
    1. Penn J. S., Madan A., Caldwell R. B., Bartoli M., Caldwell R. W., Hartnett M. E. Vascular endothelial growth factor in eye disease. Progress in Retinal and Eye Research. 2008;27(4):331–371. doi: 10.1016/j.preteyeres.2008.05.001.
    1. Angiolillo A. L., Sgadari C., Taub D. D., et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. The Journal of Experimental Medicine. 1995;182(1):155–162. doi: 10.1084/jem.182.1.155.
    1. Aiello L. P., Avery R. L., Arrigg P. G., et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. The New England Journal of Medicine. 1994;331(22):1480–1487. doi: 10.1056/nejm199412013312203.
    1. Shinoda K., Ishida S., Kawashima S., et al. Comparison of the levels of hepatocyte growth factor and vascular endothelial growth factor in aqueous fluid and serum with grades of retinopathy in patients with diabetes mellitus. British Journal of Ophthalmology. 1999;83(7):834–837. doi: 10.1136/bjo.83.7.834.
    1. Duh E., Aiello L. P. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes. 1999;48(10):1899–1906. doi: 10.2337/diabetes.48.10.1899.
    1. Mitamura Y., Tashimo A., Nakamura Y., et al. Vitreous levels of placenta growth factor and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Diabetes care. 2002;25, article 2352 doi: 10.2337/diacare.25.12.2352.
    1. Chen Y.-S., Hackett S. F., Schoenfeld C.-L., Vinores M. A., Vinores S. A., Campochiaro P. A. Localisation of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. British Journal of Ophthalmology. 1997;81(10):919–926. doi: 10.1136/bjo.81.10.919.
    1. Ziche M., Maglione D., Ribatti D., et al. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Laboratory Investigation. 1997;76(4):517–531.
    1. Spirin K. S., Saghizadeh M., Lewin S. L., Zardi L., Kenney M. C., Ljubimov A. V. Basement membrane and growth factor gene expression in normal and diabetic human retinas. Current Eye Research. 1999;18(6):490–499. doi: 10.1076/ceyr.18.6.490.5267.
    1. Khaliq A., Foreman D., Ahmed A., et al. Increased expression of placenta growth factor in proliferative diabetic retinopathy. Laboratory Investigation. 1998;78(1):109–116.
    1. Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0.
    1. Canfield A. E., Schor A. M. Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. Journal of Cell Science. 1995;108(2):797–809.
    1. Mitamura Y., Takeuchi S., Ohtsuka K., Matsuda A., Hiraiwa N., Kusakabe M. Tenascin-C levels in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care. 2002;25, article 1899
    1. Immonen I., Tervo K., Virtanen I., Laatikainen L., Tervo T. Immunohistochemical demonstration of cellular fibronectin and tenascin in human epiretinal membranes. Acta Ophthalmologica. 1991;69(4):466–471.
    1. Hagedorn M., Esser P., Wiedemann P., Heimann K. Tenascin and decorin in epiretinal membranes of proliferative vitreoretinopathy and proliferative diabetic retinopathy. German Journal of Ophthalmology. 1993;2(1):28–31.
    1. Burgos R., Mateo C., Cantón A., Hernández C., Mesa J., Simó R. Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study. Diabetes Care. 2000;23(1):80–83. doi: 10.2337/diacare.23.1.80.
    1. Poulaki V., Joussen A. M., Mitsiades N., Mitsiades C. S., Iliaki E. F., Adamis A. P. Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. American Journal of Pathology. 2004;165(2):457–469. doi: 10.1016/S0002-9440(10)63311-1.
    1. Boulton M., Gregor Z., McLeod D., et al. Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. British Journal of Ophthalmology. 1997;81(3):228–233. doi: 10.1136/bjo.81.3.228.
    1. Glaser B. M., D'Amore P. A., Michels R. G., Patz A., Fenselau A. Demonstration of vasoproliferative activity from mammalian retina. Journal of Cell Biology. 1980;84(2):298–304. doi: 10.1083/jcb.84.2.298.
    1. Wong C. G., Rich K. A., Liaw L.-H. L., Hsu H. T., Berns M. W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Current Eye Research. 2001;22(2):140–147. doi: 10.1076/ceyr.22.2.140.5528.
    1. Sivalingam A., Kenney J., Brown G. C., Benson W. E., Donoso L. Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Archives of Ophthalmology. 1990;108(6):869–872. doi: 10.1001/archopht.1990.01070080113046.
    1. Hueber A., Wiedemann P., Esser P., Heimann K. Basic fibroblast growth factor mRNA, bFgF peptide and FGF receptor in epiretinal membranes of intraocular proliferative disorders (PVR and PDR) International Ophthalmology. 1996-1997;20(6):345–350.
    1. Hollborn M., Krausse C., Iandiev I., et al. Glial cell expression of hepatocyte growth factor in vitreoretinal proliferative disease. Laboratory Investigation. 2004;84(8):963–972. doi: 10.1038/labinvest.3700121.
    1. Harada C., Harada T., Quah H.-M. A., et al. Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience. 2003;122(1):229–235. doi: 10.1016/s0306-4522(03)00599-2.
    1. Stavri G. T., Zachary I. C., Baskerville P. A., Martin J. F., Erusalimsky J. D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation. 1995;92(1):11–14. doi: 10.1161/01.cir.92.1.11.
    1. Matsumoto K., Nakamura T. Emerging multipotent aspects of hepatocyte growth factor. Journal of Biochemistry. 1996;119(4):591–600. doi: 10.1093/oxfordjournals.jbchem.a021283.
    1. Canton A., Burgos R., Hernández C., et al. Hepatocyte growth factor in vitreous and serum from patients with proliferative diabetic retinopathy. British Journal of Ophthalmology. 2000;84(7):732–735. doi: 10.1136/bjo.84.7.732.
    1. Cai W., Rook S. L., Jiang Z. Y., Takahara N., Aiello L. P. Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth. Investigative Ophthalmology and Visual Science. 2000;41(7):1885–1893.
    1. Blom I. E., Goldschmeding R., Leask A. Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biology. 2002;21(6):473–482. doi: 10.1016/s0945-053x(02)00055-0.
    1. Kita T., Hata Y., Miura M., Kawahara S., Nakao S., Ishibashi T. Functional characteristics of connective tissue growth factor on vitreoretinal cells. Diabetes. 2007;56(5):1421–1428. doi: 10.2337/db06-1644.
    1. Kelly D. J., Zhang Y., Gow R. M., Itescu S., Gilbert R. E. Cells expressing the stem cell factor receptor, c-kit, contribute to neoangiogenesis in diabetes. Diabetes and Vascular Disease Research. 2005;2(2):76–80. doi: 10.3132/dvdr.2005.013.
    1. Erslev A. J. Erythropoietin. The New England Journal of Medicine. 1991;324(19):1339–1344. doi: 10.1056/nejm199105093241907.
    1. Watanabe D., Suzuma K., Matsui S., et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. The New England Journal of Medicine. 2005;353(8):782–792. doi: 10.1056/nejmoa041773.
    1. Chen J., Connor K. M., Aderman C. M., Smith L. E. H. Erythropoietin deficiency decreases vascular stability in mice. Journal of Clinical Investigation. 2008;118(2):526–533. doi: 10.1172/jci33813.
    1. García-Ramírez M., Hernández C., Simó R. Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and non-diabetic subjects. Diabetes Care. 2008;31(6):1189–1194. doi: 10.2337/dc07-2075.
    1. Jaquet K., Krause K., Tawakol-Khodai M., Geidel S., Kuck K.-H. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvascular Research. 2002;64(2):326–333. doi: 10.1006/mvre.2002.2426.
    1. Ribatti D., Presta M., Vacca A., et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood. 1999;93(8):2627–2636.
    1. Becerra S. P., Amaral J. Erythropoietin—an endogenous retinal survival factor. The New England Journal of Medicine. 2002;347(24):1968–1970. doi: 10.1056/nejmcibr022629.
    1. Chong Z. Z., Kang J.-Q., Maiese K. Erythropoietin is a novel vascular protectant through activation of AKt1 and mitochondrial modulation of cysteine proteases. Circulation. 2002;106(23):2973–2979. doi: 10.1161/01.cir.0000039103.58920.1f.
    1. Digicaylioglu M., Lipton S. A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature. 2001;412(6847):641–647. doi: 10.1038/35088074.
    1. Hernández C., Fonollosa A., García-Ramírez M., et al. Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care. 2006;29(9):2028–2033. doi: 10.2337/dc06-0556.
    1. Katsura Y., Okano T., Matsuno K., et al. Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care. 2005;28(9):2252–2254. doi: 10.2337/diacare.28.9.2252.
    1. Semenza G. L. Regulation of erythropoietin production. New insights into molecular mechanism of oxygen homeostasis. Hematology/Oncology Clinics of North America. 1994;8(5):863–884.
    1. Stahl A., Buchwald A., Martin G., et al. Vitreal levels of erythropoietin are increased in patients with retinal vein occlusion and correlate with vitreal VEGF and the extent of macular edema. Retina. 2010;30(9):1524–1529. doi: 10.1097/iae.0b013e3181d37539.
    1. Fisher J. W. Landmark advances in the development of erythropoietin. Experimental Biology and Medicine. 2010;235(12):1398–1411. doi: 10.1258/ebm.2010.010137.
    1. Sekiguchi N., Inoguchi T., Kobayashi K., Sonoda N., Nawata H. Erythropoietin attenuated high glucose-induced apoptosis in cultured human aortic endothelial cells. Biochemical and Biophysical Research Communications. 2005;334(1):218–222. doi: 10.1016/j.bbrc.2005.06.072.
    1. Grant M. B., Boulton M. E., Ljubimov A. V. Erythropoietin: when liability becomes asset in neurovascular repair. Journal of Clinical Investigation. 2008;118(2):467–470. doi: 10.1172/jci34643.
    1. Takagi H., Watanabe D., Suzuma K., et al. Novel role of erythropoietin in proliferative diabetic retinopathy. Diabetes Research and Clinical Practice. 2007;77(3):S62–S64. doi: 10.1016/j.diabres.2007.01.035.
    1. Kubota N., Terauchi Y., Yamauchi T., et al. Disruption of adiponectin causes insulin resistance and neointimal formation. Journal of Biological Chemistry. 2002;277(29):25863–25866. doi: 10.1074/jbc.c200251200.
    1. Frystyk J., Tarnow L., Krarup Hansen T., Parving H.-H., Flyvbjerg A. Increased serum adiponectin levels in type 1 diabetic patients with microvascular complications. Diabetologia. 2005;48(9):1911–1918. doi: 10.1007/s00125-005-1850-z.
    1. Goldstein B. J., Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. Journal of Clinical Endocrinology and Metabolism. 2004;89(6):2563–2568. doi: 10.1210/jc.2004-0518.
    1. Yilmaz M. I., Sonmez A., Acikel C., et al. Adiponectin may play a part in the pathogenesis of diabetic retinopathy. European Journal of Endocrinology. 2004;151(1):135–140. doi: 10.1530/eje.0.1510135.
    1. Cohen T., Nahari D., Cerem L. W., Neufeld G., Levin B.-Z. Interleukin 6 induces the expression of vascular endothelial growth factor. The Journal of Biological Chemistry. 1996;271(2):736–741. doi: 10.1074/jbc.271.2.736.
    1. Morohoshi M., Fujisawa K., Uchimura I., Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes. 1996;45(3):954–959. doi: 10.2337/diab.45.7.954.
    1. Legendre F., Bogdanowicz P., Boumediene K., Pujol J. P. Role of interleukin 6 (IL6)/IL-6R-induced signal transducesrs and activators of transcription and mitogen-activaded protein kinase/extracellular. The Journal of Rheumatology. 2005;32:1307–1316.
    1. Symeonidis C., Papakonstantinou E., Androudi S., et al. Interleukin-6 and the matrix metalloproteinase response in the vitreous during proliferative vitreoretinopathy. Cytokine. 2011;54(2):212–217. doi: 10.1016/j.cyto.2011.02.001.
    1. Taub D. D., Anver M., Oppenheim J. J., Longo D. L., Murphy W. J. T lymphocyte recruitment by interleukin-8 (IL-8): IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. Journal of Clinical Investigation. 1996;97(8):1931–1941. doi: 10.1172/jci118625.
    1. Ghasemi H., Ghazanfari T., Yaraee R., Faghihzadeh S., Hassan Z. M. Roles of IL-8 in ocular inflammations: a review. Ocular Immunology and Inflammation. 2011;19(6):401–412. doi: 10.3109/09273948.2011.618902.
    1. Mocan M. C., Kadayifcilar S., Eldem B. Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Canadian Journal of Ophthalmology. 2006;41(6):747–752. doi: 10.1139/i06-070.
    1. Limb G. A., Little B. C., Meager A., et al. Cytokines in proliferative vitreoretinopathy. Eye. 1991;5:686–693.
    1. Gustavsson C., Agardh C.-D., Hagert P., Agardh E. Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina. 2008;28(4):645–652. doi: 10.1097/IAE.0b013e31815ec32d.
    1. Arjamaa O., Pöllönen M., Kinnunen K., Ryhänen T., Kaarniranta K. Increased IL-6 levels are not related to NF-κB or HIF-1α transcription factors activity in the vitreous of proliferative diabetic retinopathy. Journal of Diabetes and its Complications. 2011;25(6):393–397. doi: 10.1016/j.jdiacomp.2011.06.002.
    1. Oh I. K., Kim S.-W., Oh J., Lee T. S., Huh K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Current Eye Research. 2010;35(12):1116–1127. doi: 10.3109/02713683.2010.510257.
    1. Guarda G., So A. Regulation of inflammasome activity. Immunology. 2010;130(3):329–336. doi: 10.1111/j.1365-2567.2010.03283.x.
    1. Elner S. G., Elner V. M., Jaffe G. J., Stuart A., Kunkel S. L., Strieter R. M. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Current Eye Research. 1995;14(11):1045–1053. doi: 10.3109/02713689508998529.
    1. Rosenbaum J. T., Samples J. R., Hefeneider S. H., Howes E. L. Ocular inflammatory effects of intravitreal interleukin 1. Archives of Ophthalmology. 1987;105(8):1117–1120. doi: 10.1001/archopht.1987.01060080119040.
    1. Vincent J. A., Mohr S. Inhibition of caspase-1/interleukin-1β signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes. 2007;56(1):224–230. doi: 10.2337/db06-0427.
    1. Kowluru R. A., Odenbach S. Role of interleukin-1β in the pathogenesis of diabetic retinopathy. British Journal of Ophthalmology. 2004;88(10):1343–1347. doi: 10.1136/bjo.2003.038133.
    1. Parameswaran N., Patial S. Tumor necrosis factor-a signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression. 2010;20(2):87–103. doi: 10.1615/CritRevEukarGeneExpr.v20.i2.10.
    1. Tezel G., Wax M. B. Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. Journal of Neuroscience. 2000;20(23):8693–8700.
    1. Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin induced serum factor that cuases necrosis of tumors. Proceedings of the National Academy of Sciences of the United States of America. 1975;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666.
    1. Aveleira C. A., Lin C.-M., Abcouwer S. F., Ambrósio A. F., Antonetti D. A. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59(11):2872–2882. doi: 10.2337/db09-1606.
    1. Madigan M. G., Sadun A. A., Rao N. S., Dugel P. U., Tenhula W. N., Gill P. S. Tumor necrosis factor-alpha (TNF-α)-induced optic neuropathy in rabbits. Neurological Research. 1996;18(2):176–184.
    1. Majka S., McGuire P. G., Das A. Regulation of matrix metalloproteinase expression by tumor necrosis factor in a murine model of retinal neovascularization. Investigative Ophthalmology and Visual Science. 2002;43(1):260–266.
    1. Kahn S. E., Hull R. L., Utzschneider K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–846. doi: 10.1038/nature05482.
    1. Doganay S., Evereklioglu C., Er H., et al. Comparison of serum NO, TNF-α, IL-1β, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye. 2002;16(2):163–170. doi: 10.1038/sj.eye.6700095.
    1. Behl Y., Krothapalli P., Desta T., DiPiazza A., Roy S., Graves D. T. Diabetes-enhanced tumor necrosis factor-α production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. The American Journal of Pathology. 2008;172(5):1411–1418. doi: 10.2353/ajpath.2008.071070.
    1. Behl Y., Krothapalli P., Desta T., Roy S., Graves D. T. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes. 2009;58(4):917–925. doi: 10.2337/db08-0537.
    1. Huang H., Gandhi J. K., Zhong X., et al. TNFα is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Investigative Ophthalmology and Visual Science. 2011;52(3):1336–1344. doi: 10.1167/iovs.10-5768.
    1. Lotze M. T., Tracey K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology. 2005;5(4):331–342. doi: 10.1038/nri1594.
    1. Arimura N., Ki-I Y., Hashiguchi T., et al. Intraocular expression and release of high-mobility group box 1 protein in retinal detachment. Laboratory Investigation. 2009;89(3):278–289. doi: 10.1038/labinvest.2008.165.
    1. Watanabe T., Keino H., Sato Y., Kudo A., Kawakami H., Okada A. A. High mobility group box protein-1 in experimental autoimmune uveoretinitis. Investigative Ophthalmology & Visual Science. 2009;50(5):2283–2290. doi: 10.1167/iovs.08-2709.
    1. Yang S., Hirooka K., Liu Y., et al. Deleterious role of anti-high mobility group box 1 monoclonal antibody in retinal ischemia-reperfusion injury. Current Eye Research. 2011;36(11):1037–1046. doi: 10.3109/02713683.2011.594201.
    1. El-Asrar A. M. A., Nawaz M. I., Kangave D., et al. High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Molecular Vision. 2011;17:1829–1838.
    1. Lee J.-J., Hsiao C.-C., Yang I.-H., et al. High-mobility group box 1 protein is implicated in advanced glycation end products-induced vascular endothelial growth factor a production in the rat retinal ganglion cell line RGC-5. Molecular Vision. 2012;18:838–850.
    1. Jakuš V., Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiological Research. 2004;53(2):131–142.
    1. Barnes P. J. Nuclear factor-κB. International Journal of Biochemistry and Cell Biology. 1997;29(6):867–870. doi: 10.1016/s1357-2725(96)00159-8.
    1. Kiechl S., Wittmann J., Giaccari A., et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nature Medicine. 2013;19(3):358–363. doi: 10.1038/nm.3084.
    1. Sakai N., van Sweringen H. L., Schuster R., et al. Receptor activator of nuclear factor-κB ligand (RANKL) protects against hepatic ischemia/reperfusion injury in mice. Hepatology. 2012;55(3):888–897. doi: 10.1002/hep.24756.
    1. Semenza G. L. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology. 2004;19(4):176–182. doi: 10.1152/physiol.00001.2004.
    1. Arjamaa O., Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Experimental Eye Research. 2006;83(3):473–483. doi: 10.1016/j.exer.2006.01.016.
    1. Treins C., Giorgetti-Peraldi S., Murdaca J., Monthouël-Kartmann M.-N., van Obberghen E. Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Molecular Endocrinology. 2005;19(5):1304–1317. doi: 10.1210/me.2004-0239.
    1. Poulaki V., Qin W., Joussen A. M., et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1α and VEGF. The Journal of Clinical Investigation. 2002;109(6):805–815. doi: 10.1172/jci200213776.
    1. El-Asrar A. M. A., Missotten L., Geboes K. Expression of hypoxia-inducible factor-1 alpha and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. British Journal of Ophthalmology. 2007;91(6):822–826. doi: 10.1136/bjo.2006.109876.
    1. Frede S., Stockmann C., Freitag P., Fandrey J. Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB. Biochemical Journal. 2006;396(3):517–527. doi: 10.1042/BJ20051839.
    1. Gharaee-Kermani M., Denholm E. M., Phan S. H. Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. The Journal of Biological Chemistry. 1996;271(30):17779–17784. doi: 10.1074/jbc.271.30.17779.
    1. Hong K. H., Ryu J., Han K. H. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2005;105(4):1405–1407. doi: 10.1182/blood-2004-08-3178.
    1. Esser P., Heimann K., Wiedemann P. Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. British Journal of Ophthalmology. 1993;77(11):731–733. doi: 10.1136/bjo.77.11.731.
    1. Mitamura Y., Takeuchi S., Matsuda A., Tagawa Y., Mizue Y., Nishihira J. Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica. 2001;215(6):415–418. doi: 10.1159/000050900.
    1. Tashimo A., Mitamura Y., Nagai S., et al. Aqueous levels of macrophage migration inhibitory factor and monocyte chemotactic protein-1 in patients with diabetic retinopathy. Diabetic Medicine. 2004;21(12):1292–1297. doi: 10.1111/j.1464-5491.2004.01334.x.
    1. Zhang W., Liu H., Al-Shabrawey M., Caldwell R., Caldwell R. Inflammation and diabetic retinal microvascular complications. Journal of Cardiovascular Disease Research. 2011;2(2):96–103. doi: 10.4103/0975-3583.83035.
    1. Abu El-Asrar A. M., Struyf S., Kangave D., Geboes K., Van Damme J. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. European Cytokine Network. 2006;17(3):155–165.
    1. Wakabayashi Y., Usui Y., Okunuki Y., et al. Increased levels of monokine induced by interferon-gamma (Mig) in the vitreous of patients with diabetic retinopathy. Diabetic Medicine. 2008;25:875–877. doi: 10.1111/j.1464-5491.2008.02466.x.
    1. Salcedo R., Oppenheim J. J. Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation. 2003;10(3-4):359–370. doi: 10.1038/sj.mn.7800200.
    1. Butler J. M., Guthrie S. M., Koc M., et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. Journal of Clinical Investigation. 2005;115(1):86–93. doi: 10.1172/JCI200522869.
    1. Grant M. B., Afzal A., Spoerri P., Pan H., Shaw L. C., Mames R. N. The role of growth factors in the pathogenesis of diabetic retinopathy. Expert Opinion on Investigational Drugs. 2004;13(10):1275–1293. doi: 10.1517/13543784.13.10.1275.
    1. You J.-J., Yang C.-H., Huang J.-S., Chen M.-S., Yang C.-M. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Investigative Ophthalmology and Visual Science. 2007;48(11):5290–5298. doi: 10.1167/iovs.07-0187.
    1. Chen L. Y., Zhuo Y. H., Li Y. H., et al. Expression of stromal cell-derived factor-1 in diabetic retinopathy. Chinese Medical Journal. 2010;123(8):984–988. doi: 10.3760/cma.j.issn.0366-6999.2010.08.002.
    1. Mitamura Y., Takeuchi S., Matsuda A., Tagawa Y., Mizue Y., Nishihira J. Macrophage migration inhibitory factor levels in the vitreous of patients with proliferative diabetic retinopathy. British Journal of Ophthalmology. 2000;84(6):636–639. doi: 10.1136/bjo.84.6.636.
    1. Lu M., Perez V. L., Ma N., et al. VEGF increases retinal vascular ICAM-1 expression in vivo. Investigative Ophthalmology and Visual Science. 1999;40(8):1808–1812.
    1. McLeod D. S., Lefer D. J., Merges C., Lutty G. A. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. The American Journal of Pathology. 1995;147(3):642–653.
    1. Barouch F. C., Miyamoto K., Allport J. R., et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Investigative Ophthalmology and Visual Science. 2000;41(5):1153–1158.
    1. Hernández C., Burgos R., Cantón A., García-Arumí J., Segura R. M., Simó R. Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study. Diabetes Care. 2001;24(3):516–521. doi: 10.2337/diacare.24.3.516.
    1. Adamiec-Mroczek J., Oficjalska-Młyńczak J., Misiuk-Hojło M. Roles of endothelin-1 and selected proinflammatory cytokines in the pathogenesis of proliferative diabetic retinopathy: analysis of vitreous samples. Cytokine. 2010;49(3):269–274. doi: 10.1016/j.cyto.2009.11.004.
    1. Murata M., Noda K., Fukuhara J., et al. Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy. Investigative Ophthalmology and Visual Science. 2012;53(7):4055–4062. doi: 10.1167/iovs.12-9857.
    1. Baudouin C., Fredj-Reygrobellet D., Brignole F., Lapalus P., Gastaud P. MHC class II antigen expression by ocular cells in proliferative diabetic retinopathy. Fundamental and Clinical Pharmacology. 1993;7(9):523–530. doi: 10.1111/j.1472-8206.1993.tb00256.x.
    1. Gao B.-B., Chen X., Timothy N., Aiello L. P., Feener E. P. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. Journal of Proteome Research. 2008;7(6):2516–2525. doi: 10.1021/pr800112g.
    1. Zong H., Ward M., Madden A., et al. Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE) Diabetologia. 2010;53(12):2656–2666. doi: 10.1007/s00125-010-1900-z.
    1. El-Asrar A. M. A., Missotten L., Geboes K. Expression of cyclo-oxygenase-2 and downstream enzymes in diabetic fibrovascular epiretinal membranes. The British Journal of Ophthalmology. 2008;92(11):1534–1539. doi: 10.1136/bjo.2008.142182.
    1. Joussen A. M., Poulaki V., Mitsiades N., et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. The FASEB Journal. 2002;16(3):438–440.
    1. Ayalasomayajula S. P., Kompella U. B. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. European Journal of Pharmacology. 2003;458(3):283–289. doi: 10.1016/s0014-2999(02)02793-0.
    1. Schwartzman M. L., Iserovich P., Gotlinger K., et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy. Diabetes. 2010;59(7):1780–1788. doi: 10.2337/db10-0110.
    1. Gubitosi-Klug R. A., Talahalli R., Du Y., Nadler J. L., Kern T. S. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes. 2008;57(5):1387–1393. doi: 10.2337/db07-1217.
    1. Lutty G. A., McLeod D. S., Merges C., Diggs A., Plouét J. Localization of vascular endothelial growth factor in human retina and choroid. Archives of Ophthalmology. 1996;114(8):971–977. doi: 10.1001/archopht.1996.01100140179011.
    1. Early Treatment Diabetic Retinopathy Study Research Group. Effects of aspirin treatment on diabetic retionopathy. ETDRS report number 8. Ophthalmology. 1991;98:757–777. doi: 10.1016/s0161-6420(13)38010-5.
    1. Nakao S., Arima M., Ishikawa K., et al. Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis. Investigative Ophthalmology and Visual Science. 2012;53(7):4323–4328. doi: 10.1167/iovs.11-9119.

Source: PubMed

3
Tilaa