The Role of Zinc in Male Fertility

Deborah Allouche-Fitoussi, Haim Breitbart, Deborah Allouche-Fitoussi, Haim Breitbart

Abstract

Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3-, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.

Keywords: acrosome reaction; capacitation; motility; reproduction; spermatozoa; zinc.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A model describing the mechanisms that mediate the stimulation of hyper-activated motility (HAM) and acrosomal exocytosis (AE) by Zn2+: Zn2+ binds and activates GPR39, which activates the tmAC to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading to increased pHi and the activation of CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates sAC. The increase in [cAMP]i causes PKA activation, followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates PLD1 leading to F-actin formation during capacitation. Prior to the AE, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and acrosomal exocytosis (AE).

References

    1. Chvapil M. New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes. Life Sci. 1973;13:1041–1049. doi: 10.1016/0024-3205(73)90372-X.
    1. Zhao C.Y., Tan S.X., Xiao X.Y., Qiu X.S., Pan J.Q., Tang Z.X. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol. Trace Elem. Res. 2014;160:361–367. doi: 10.1007/s12011-014-0052-2.
    1. Parashuramulu S., Nagalakshmi D., Rao D.S., Kumar M.K., Swain P. Effect of Zinc supplementation on antioxidant status and immune response in buffalo calves. Anim. Nutr. Feed Technol. 2015;15:179–188. doi: 10.5958/0974-181X.2015.00020.7.
    1. Frederickson C.J., Koh J.Y., Bush A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005;6:449–462. doi: 10.1038/nrn1671.
    1. Rink L., Gabriel P. Zinc and the immune system. Proc. Nutr. Soc. 2000;59:541–552. doi: 10.1017/S0029665100000781.
    1. Yan M., Hardin K., Ho E. Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells. J. Nutr. Biochem. 2010;21:687–694. doi: 10.1016/j.jnutbio.2009.04.002.
    1. Plum L.M., Rink L., Haase H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi: 10.3390/ijerph7041342.
    1. Sauer A.K., Hagmeyer S., Grabrucker A.M. Zinc De-ficiency. In: Erkekoglu P., Kocel-Gumusel B., editors. Nutritional Deficiency. Tech Open Science; Rijeka, Croatia: 2016. pp. 23–46.
    1. Wani A.L., Parveen N., Ansari M.O., Ahmad M.F., Ja-meel S., Shadab G. Zinc: An element of extensive medical importance. Curr. Med. Res. Pract. 2017;7:90–98. doi: 10.1016/j.cmrp.2017.02.006.
    1. Wong W.Y., Flik G., Groenen P.M., Swinkels D.W., Thomas C.M., Copius-Peereboom J.H., Merkus H.M., Steegers-Theunissen R.P. The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameters in men. Reprod. Toxicol. 2001;15:131–136. doi: 10.1016/S0890-6238(01)00113-7.
    1. Colagar A.H., Marzony E.T., Chaichi M.J. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res. 2009;29:82–88. doi: 10.1016/j.nutres.2008.11.007.
    1. Prasad A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013;4:176–190. doi: 10.3945/an.112.003210.
    1. Kala S., Singh A., Prabha V., Singh R., Sharma P. Escherichia coli attaches to human spermatozoa: Affecting sperm parameters. Arch. Appl. Sci. Res. 2011;3:618–623.
    1. Albert A. Selective Toxicity: The Physico-Chemical Basis of Therapy. 6th ed. Springer; Dordrecht, The Netherlands: 2012. p. 368.
    1. Vijayalakshmi K., Sivaraj D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015;5:68461–68469. doi: 10.1039/C5RA13375K.
    1. Bjorndahl L., Kjellberg S., Roomans G.M., Kvist U. The human sperm nucleus takes up zinc at ejaculation. Int. J. Androl. 1986;9:77–80. doi: 10.1111/j.1365-2605.1986.tb00869.x.
    1. Bertrand G., Vladesco M.R. Role of zinc in reproduction. Acad. Sci. 1921;173:176–179.
    1. Mankad M., Sathawara N.G., Doshi H., Saiyed H.N., Kumar S. Seminal plasma zinc concentration and alpha-glucosidase activity with respect to semen quality. Biol. Trace Elem. Res. 2006;110:97–106. doi: 10.1385/BTER:110:2:97.
    1. Liu D.Y., Sie B.S., Liu M.L., Agresta F., Baker H.W. Relationship between seminal plasma zinc concentration and spermatozoa-zona pellucida binding and the ZP-induced acrosome reaction in subfertile men. Asian J. Androl. 2009;11:499–507. doi: 10.1038/aja.2009.23.
    1. Ma J., Han R., Li Y., Cui T., Wang S. The Mechanism of Zinc Sulfate in Improving Fertility in Obese Rats Analyzed by Sperm Proteomic Analysis. Biomed. Res. Int. 2020;2020:9876363. doi: 10.1155/2020/9876363.
    1. Eggert-Kruse W., Zwick E.M., Batschulat K., Rohr G., Armbruster F.P., Petzoldt D., Strowitzki T. Are zinc levels in seminal plasma associated with seminal leukocytes and other determinants of semen quality? Fertil. Steril. 2002;77:260–269. doi: 10.1016/S0015-0282(01)02974-0.
    1. Lin Y.C., Chang T.C., Tseng Y.J., Lin Y.L., Huang F.J., Kung F.T., Chang S.Y. Seminal plasma zinc levels and sperm motion characteristics in infertile samples. Chang. Gung. Med. J. 2000;23:260–266.
    1. Brito M., Figueroa J., Vera J.C., Cortés P., Hott R., Burzio L.O. Phosphoproteins are structural components of bull sperm outer dense fiber. Gamete Res. 1986;15:327–336. doi: 10.1002/mrd.1120150406.
    1. Kumar N., Singh A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015;8:191–196. doi: 10.4103/0974-1208.170370.
    1. Hunt C.D., Johnson P.E., Herbel J., Mullen L.K. Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. Am. J. Clin. Nutr. 1992;56:148–157. doi: 10.1093/ajcn/56.1.148.
    1. Zhao J., Dong X., Hu X., Long Z., Wang L., Liu Q., Sun B., Wang Q., Wu Q., Li L. Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis. Sci. Rep. 2016;6:22386. doi: 10.1038/srep22386.
    1. Alsalman A.R.S., Almashhedy L.A., Hadwan M.H. Effect of Oral Zinc Supplementation on the Thiol Oxido-Reductive Index and Thiol-Related Enzymes in Seminal Plasma and Spermatozoa of Iraqi Asthenospermic Patients. Biol. Trace Elem. Res. 2018;184:340–349. doi: 10.1007/s12011-017-1215-8.
    1. Nielsen F.H. History of zinc in agriculture. Adv. Nutr. 2012;3:783–789. doi: 10.3945/an.112.002881.
    1. Kumar N., Verma R.P., Singh L.P., Varshney V.P., Dass R.S. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus × Bos taurus) bulls. Reprod. Nutr. Dev. 2006;46:663–675. doi: 10.1051/rnd:2006041.
    1. Hill G.M., Shannon M.C. Copper and Zinc Nutritional Issues for Agricultural Animal Production. Biol. Trace Elem. Res. 2019;188:148–159. doi: 10.1007/s12011-018-1578-5.
    1. O’Flaherty C., Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104.
    1. Lee S.R. Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid. Med. Cell. Longev. 2018;2018 doi: 10.1155/2018/9156285.
    1. Kerns K., Zigo M., Drobnis E.Z., Sutovsky M., Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 2018;9:2061. doi: 10.1038/s41467-018-04523-y.
    1. Song W.H., Sutovsky P. Porcine Cell-Free System to Study Mammalian Sperm Mitophagy. Methods Mol. Biol. 2019;1854:197–207.
    1. Roomans G.M., Lundevall E., Bjorndahl L., Kvist U. Removal of zinc from subcellular regions of human spermatozoa by EDTA treatment studied by X-ray microanalysis. Int. J. Androl. 1982;5:478–486. doi: 10.1111/j.1365-2605.1982.tb00279.x.
    1. Kvist U. Importance of spermatozoal zinc as temporary inhibitor of sperm nuclear chromatin decondensation ability in man. Acta Physiol. Scand. 1980;109:79–84. doi: 10.1111/j.1748-1716.1980.tb06567.x.
    1. Kvist U. Spermatozoal thiol-disulphide interaction: A possible event underlying physiological sperm nuclear chromatin decondensation. Acta Physiol. Scand. 1982;115:503–505. doi: 10.1111/j.1748-1716.1982.tb07111.x.
    1. Rodriguez H., Ohanian C., Bustos-Obregon E. Nuclear chromatin decondensation of spermatozoa in vitro: A method for evaluating the fertilizing ability of ovine semen. Int. J. Androl. 1985;8:147–158. doi: 10.1111/j.1365-2605.1985.tb00828.x.
    1. Bin B.H., Seo J., Kim S.T. Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J. Immunol. Res. 2018;2018:9365747. doi: 10.1155/2018/9365747.
    1. Baltaci A.K., Yuce K. Zinc transporter proteins. Neurochem. Res. 2018;43:517–530. doi: 10.1007/s11064-017-2454-y.
    1. Bin B.H., Fukada T., Hosaka T., Yamasaki S., Ohashi W., Hojyo S., Miyai T., Nishida K., Yokoyama S., Hirano T. Biochemical characterization of human ZIP13 protein: A homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J. Biol. Chem. 2011;286:40255–40265. doi: 10.1074/jbc.M111.256784.
    1. Taylor K.M., Nicholson R.I. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim. Biophys. Acta. 2003;1611:16–30. doi: 10.1016/S0005-2736(03)00048-8.
    1. Gaither L.A., Eide D.J. Functional expression of the human hZIP2 zinc transporter. J. Biol. Chem. 2000;275:5560–5564. doi: 10.1074/jbc.275.8.5560.
    1. Fukada T., Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics. 2011;3:662–674. doi: 10.1039/c1mt00011j.
    1. Kimura T., Kambe T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int. J. Mol. Sci. 2016;17:336. doi: 10.3390/ijms17030336.
    1. Chao Y., Fu D. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J. Biol. Chem. 2004;279:17173–17180. doi: 10.1074/jbc.M400208200.
    1. L’Hernault S.W., Shakes D.C., Ward S. Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics. 1988;120:435–452.
    1. Ward S., Miwa J. Characterization of temperature-sensitive, fertilization-defective mutants of the nematode Caenorhabditis elegans. Genetics. 1978;88:285–303.
    1. Muhlrad P.J., Clark J.N., Nasri U., Sullivan N.G., LaMunyon C.W. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. BMC Genet. 2014;15:83. doi: 10.1186/1471-2156-15-83.
    1. Hubbard S.R., Till J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 2000;69:373–398. doi: 10.1146/annurev.biochem.69.1.373.
    1. Visconti P.E., Stewart-Savage J., Blasco A., Battaglia L., Miranda P., Kopf G.S., Tezon J.G. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol. Reprod. 1999;61:76–84. doi: 10.1095/biolreprod61.1.76.
    1. Geldziler B., Chatterjee I., Singson A. The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev. Biol. 2005;283:424–436. doi: 10.1016/j.ydbio.2005.04.036.
    1. Nance J., Davis E.B., Ward S. spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics. 2000;156:1623–1633.
    1. Shakes D.C., Ward S. Initiation of spermiogenesis in C. elegans: A pharmacological and genetic analysis. Dev. Biol. 1989;134:189–200. doi: 10.1016/0012-1606(89)90088-2.
    1. Liu Z., Chen L., Shang Y., Huang P., Miao L. The micronutrient element zinc modulates sperm activation through the SPE-8 pathway in Caenorhabditis elegans. Development. 2013;140:2103–2107. doi: 10.1242/dev.091025.
    1. Muhlrad P.J., Ward S. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics. 2002;161:143–155.
    1. Arduengo P.M., Appleberry O.K., Chuang P., L’Hernault S.W. The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. J. Cell. Sci. 1998;111:3645–3654.
    1. Dietrich N., Schneider D.L., Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res. 2017;45:11658–11672. doi: 10.1093/nar/gkx762.
    1. Shihan M., Chan K.H., Konrad L., Scheiner-Bobis G. Non-classical testosterone signaling in spermatogenic GC-2 cells is mediated through ZIP9 interacting with Gnalpha11. Cell Signal. 2015;27:2077–2086. doi: 10.1016/j.cellsig.2015.07.013.
    1. Bjorndahl L., Kvist U. Human sperm chromatin stabilization: A proposed model including zinc bridges. Mol. Hum. Reprod. 2010;16:23–29. doi: 10.1093/molehr/gap099.
    1. Bjorndahl L., Kvist U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst. Biol. Reprod. Med. 2011;57:86–92. doi: 10.3109/19396368.2010.516306.
    1. Chu D.S. Zinc: A small molecule with a big impact on sperm function. PLoS Biol. 2018;16:e2006204. doi: 10.1371/journal.pbio.2006204.
    1. Henkel R., Maass G., Schuppe H.C., Jung A., Schubert J., Schill W.B. Molecular aspects of declining sperm motility in older men. Fertil. Steril. 2005;84:1430–1437. doi: 10.1016/j.fertnstert.2005.05.020.
    1. Boran C., Ozkan K.U. The effect of zinc therapy on damaged testis in pre-pubertal rats. Pediatr. Surg. Int. 2004;20:444–448. doi: 10.1007/s00383-004-1173-z.
    1. Clapper D.L., Davis J.A., Lamothe P.J., Patton C., Epel D. Involvement of zinc in the regulation of pHi, motility, and acrosome reactions in sea urchin sperm. J. Cell Biol. 1985;100:1817–1824. doi: 10.1083/jcb.100.6.1817.
    1. Stoltenberg M., Sorensen M.B., Danscher G., Juhl S., Andreasen A., Ernst E. Autometallographic demonstration of zinc ions in rat sperm cells. Mol. Hum. Reprod. 1997;3:763–767. doi: 10.1093/molehr/3.9.763.
    1. Morisawa M., Mori H. Heavy metals and spermatozoan motility. I. Distribution of iron, zinc and copper in sea urchin spermatozoa. Exp. Cell Res. 1972;70:311–316. doi: 10.1016/0014-4827(72)90141-3.
    1. Baccetti B., Pallini V., Burrini A.G. The accessory fibers of the sperm tail. II. Their role in binding zinc in mammals and cephalopods. J. Ultrastruct. Res. 1976;54:261–275. doi: 10.1016/S0022-5320(76)80155-4.
    1. Calvin H.I. Electrophoretic evidence for the identity of the major zinc-binding polypeptides in the rat sperm tail. Biol. Reprod. 1979;21:873–882. doi: 10.1095/biolreprod21.4.873.
    1. Clermont Y., Oko R., Hermo L. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: An electron microscope study. Anat. Rec. 1990;227:447–457. doi: 10.1002/ar.1092270408.
    1. Henkel R., Baldauf C., Bittner J., Weidner W., Miska W. Elimination of zinc from the flagella of spermatozoa during epididymal transit is important for motility. Reprod. Technol. 2001;10:280–285.
    1. Bolanca I., Obhodas J., Ljiljak D., Matjacic L., Kuna K. Synergetic Effects of K, Ca, Cu and Zn in Human Semen in Relation to Parameters Indicative of Spontaneous Hyperactivation of Spermatozoa. PLoS ONE. 2016;11:e0152445. doi: 10.1371/journal.pone.0152445.
    1. Yanagimachi R. The Physiology of Reproduction. Raven Press; New York, NY, USA: 1994. Mammalian fertilization.
    1. Allouche-Fitoussi D., Bakhshi D., Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn2+ Mol. Reprod. Dev. 2018;85:543–556. doi: 10.1002/mrd.22996.
    1. Menezo Y., Pluntz L., Chouteau J., Gurgan T., Demirol A., Dalleac A., Benkhalifa M. Zinc concentrations in serum and follicular fluid during ovarian stimulation and expression of Zn2+ transporters in human oocytes and cumulus cells. Reprod. Biomed. Online. 2011;22:647–652. doi: 10.1016/j.rbmo.2011.03.015.
    1. Ho H.C., Granish K.A., Suarez S.S. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev. Biol. 2002;250:208–217. doi: 10.1006/dbio.2002.0797.
    1. Riffo M., Leiva S., Astudillo J. Effect of zinc on human sperm motility and the acrosome reaction. Int. J. Androl. 1992;15:229–237. doi: 10.1111/j.1365-2605.1992.tb01343.x.
    1. Lishko P.V., Botchkina I.L., Fedorenko A., Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell. 2010;140:327–337. doi: 10.1016/j.cell.2009.12.053.
    1. Babcock D.F., Rufo G.A., Lardy H.A. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc. Natl. Acad. Sci. USA. 1983;80:1327–1331. doi: 10.1073/pnas.80.5.1327.
    1. Miller M.R., Kenny S.J., Mannowetz N., Mansell S.A., Wojcik M., Mendoza S., Zucker R.S., Xu K., Lishko P.V. Asymmetrically positioned flagellar control units regulate human sperm rotation. Cell Rep. 2018;24:2606–2613. doi: 10.1016/j.celrep.2018.08.016.
    1. Kirichok Y., Navarro B., Clapham D.E. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature. 2006;439:737–740. doi: 10.1038/nature04417.
    1. Chung J.J., Shim S.H., Everley R.A., Gygi S.P., Zhuang X., Clapham D.E. Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014;157:808–822. doi: 10.1016/j.cell.2014.02.056.
    1. Suarez S.S., Varosi S.M., Dai X. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc. Natl. Acad. Sci. USA. 1993;90:4660–4664. doi: 10.1073/pnas.90.10.4660.
    1. Visconti P.E., Moore G.D., Bailey J.L., Laclerc P., Connors S.A., Pan D., Olds-Clarke P., Kopf G.S. Capacitation in mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995;121:1139–1150.
    1. Navarrete F.A., Garcia-Vazquez F.A., Alvau A., Escoffier J., Krapf D., Sanchez-Cardenas C., Salicioni A.M., Darszon A., Visconti P.E. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell Physiol. 2015;230:1758–1769. doi: 10.1002/jcp.24873.
    1. Lishko P.V., Kirichok Y. The role of Hv1 and CatSper channels in sperm activation. J. Physiol. 2010;588:4667–4672. doi: 10.1113/jphysiol.2010.194142.
    1. Wang D., King S.M., Quill T.A., Doolittle L.K., Garbers D.L. A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat. Cell Biol. 2003;5:1117–1122. doi: 10.1038/ncb1072.
    1. Michailov Y., Ickowicz D., Breitbart H. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation. Dev. Biol. 2014;396:246–255. doi: 10.1016/j.ydbio.2014.10.009.
    1. Schneider M., Forster H., Boersma A., Seiler A., Wehnes H., Sinowatz F., Neumuller C., Deutsch M.J., Walch A., Hrabe de Angelis M., et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009;23:3233–3242. doi: 10.1096/fj.09-132795.
    1. Brenker C., Goodwin N., Weyand I., Kashikar N.D., Naruse M., Krahling M., Muller A., Kaupp U.B., Strunker T. The CatSper channel: A polymodal chemosensor in human sperm. EMBO J. 2012;31:1654–1665. doi: 10.1038/emboj.2012.30.
    1. Wertheimer E., Krapf D., de la Vega-Beltran J.L., Sanchez-Cardenas C., Navarrete F., Haddad D., Escoffier J., Salicioni A.M., Levin L.R., Buck J., et al. Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J. Biol. Chem. 2013;288:35307–35320. doi: 10.1074/jbc.M113.489476.
    1. Etkovitz N., Tirosh Y., Chazan R., Jaldety Y., Daniel L., Rubinstein S., Breitbart H. Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev. Biol. 2009;334:447–457. doi: 10.1016/j.ydbio.2009.08.002.
    1. O’Brien E.D., Krapf D., Cabada M.O., Visconti P.E., Arranz S.E. Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev. Biol. 2011;350:80–88. doi: 10.1016/j.ydbio.2010.11.019.
    1. Hess K.C., Jones B.H., Marquez B., Chen Y., Ord T.S., Kamenetsky M., Miyamoto C., Zippin J.H., Kopf G.S., Suarez S.S., et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell. 2005;9:249–259. doi: 10.1016/j.devcel.2005.06.007.
    1. Balbach M., Beckert V., Hansen J.N., Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol. Cell Endocrinol. 2018;468:111–120. doi: 10.1016/j.mce.2017.11.008.
    1. Jansen V., Alvarez L., Balbach M., Strunker T., Hegemann P., Kaupp U.B., Wachten D. Controlling fertilization and cAMP signaling in sperm by optogenetics. Elife. 2015;4:e05161. doi: 10.7554/eLife.05161.
    1. Jansen V., Jikeli J.F., Wachten D. How to control cyclic nucleotide signaling by light. Curr. Opin. Biotechnol. 2017;48:15–20. doi: 10.1016/j.copbio.2017.02.014.
    1. Mukherjee S., Jansen V., Jikeli J.F., Hamzeh H., Alvarez L., Dombrowski M., Balbach M., Strunker T., Seifert R., Kaupp U.B., et al. A novel biosensor to study cAMP dynamics in cilia and flagella. Elife. 2016;5:e14052. doi: 10.7554/eLife.14052.
    1. Raju D.N., Hansen J.N., Rassmann S., Stuven B., Jikeli J.F., Strunker T., Korschen H.G., Moglich A., Wachten D. Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains. Cells. 2019;8:648. doi: 10.3390/cells8070648.
    1. Bajpai M., Fiedler S.E., Huang Z., Vijayaraghavan S., Olson G.E., Livera G., Conti M., Carr D.W. AKAP3 selectively binds PDE4A isoforms in bovine spermatozoa. Biol. Reprod. 2006;74:109–118. doi: 10.1095/biolreprod.105.043588.
    1. Fisch J.D., Behr B., Conti M. Enhancement of motility and acrosome reaction in human spermatozoa: Differential activation by type-specific phosphodiesterase inhibitors. Hum. Reprod. 1998;13:1248–1254. doi: 10.1093/humrep/13.5.1248.
    1. Leclerc P., Kopf G.S. Mouse sperm adenylyl cyclase: General properties and regulation by the zona pellucida. Biol. Reprod. 1995;52:1227–1233. doi: 10.1095/biolreprod52.6.1227.
    1. Abdul-Rasheed O.F. The relationship between seminal plasma zinc levels and high molecular weight zinc binding protein and sperm motility in Iraqi infertile men. Saudi Med. J. 2009;30:485–489.
    1. Narasimhaiah M., Arunachalam A., Sellappan S., Mayasula V.K., Guvvala P.R., Ghosh S.K., Chandra V., Ghosh J., Kumar H. Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats. Reprod. Domest. Anim. 2018;53:644–654. doi: 10.1111/rda.13154.
    1. Bray T.M., Bettger W.J. The physiological role of zinc as an antioxidant. Free Radic. Biol. Med. 1990;8:281–291. doi: 10.1016/0891-5849(90)90076-U.
    1. Shahar S., Wiser A., Ickowicz D., Lubart R., Shulman A., Breitbart H. Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyper-activated motility. Hum. Reprod. 2011;26:2274–2282. doi: 10.1093/humrep/der232.
    1. O’Flaherty C., Beconi M., Beorlegui N. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia. 1997;29:269–275. doi: 10.1111/j.1439-0272.1997.tb00481.x.
    1. Sikka S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001;8:851–862. doi: 10.2174/0929867013373039.
    1. De Lamirande E., Yoshida K., Yoshiike T.M., Iwamoto T., Gagnon C. Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J. Androl. 2001;22:672–679.
    1. Kerns K., Zigo M., Sutovsky P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int. J. Mol. Sci. 2018;19:4097. doi: 10.3390/ijms19124097.
    1. Kim A.M., Bernhardt M.L., Kong B.Y., Ahn R.W., Vogt S., Woodruff T.K., O’Halloran T.V. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem. Biol. 2011;6:716–723. doi: 10.1021/cb200084y.
    1. Que E.L., Duncan F.E., Bayer A.R., Philips S.J., Roth E.W., Bleher R., Gleber S.C., Vogt S., Woodruff T.K., O’Halloran T.V. Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integr. Biol. (Camb) 2017;9:135–144. doi: 10.1039/C6IB00212A.
    1. Guidobaldi H.A., Cubilla M., Moreno A., Molino M.V., Bahamondes L., Giojalas L.C. Sperm chemorepulsion, a supplementary mechanism to regulate fertilization. Hum. Reprod. 2017;32:1560–1573. doi: 10.1093/humrep/dex232.
    1. Stephenson J.L., Brackett B.G. Influences of zinc on fertilisation and development of bovine oocytes in vitro. Zygote. 1999;7:195–201. doi: 10.1017/S096719949900057X.
    1. Beek J., Nauwynck H., Maes D., Van Soom A. Inhibitors of zinc-dependent metalloproteases hinder sperm passage through the cumulus oophorus during porcine fertilization in vitro. Reproduction. 2012;144:687–697. doi: 10.1530/REP-12-0311.
    1. Warinrak C., Wu J.T., Hsu W.L., Liao J.W., Chang S.C., Cheng F.P. Expression of matrix metalloproteinases (MMP-2, MMP-9) and their inhibitors (TIMP-1, TIMP-2) in canine testis, epididymis and semen. Reprod. Domest. Anim. 2015;50:48–57. doi: 10.1111/rda.12448.
    1. Buchman-Shaked O., Kraiem Z., Gonen Y., Goldman S. Presence of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase in human sperm. J. Androl. 2002;23:702–708.
    1. Ferrer M., Rodriguez H., Zara L., Yu Y., Xu W., Oko R. MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 2012;349:881–895. doi: 10.1007/s00441-012-1429-1.
    1. Azriel-Tamir H., Sharir H., Schwartz B., Hershfinkel M. Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J. Biol. Chem. 2004;279:51804–51816. doi: 10.1074/jbc.M406581200.
    1. Besser L., Chorin E., Sekler I., Silverman W.F., Atkin S., Russell J.T., Hershfinkel M. Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J. Neurosci. 2009;29:2890–2901. doi: 10.1523/JNEUROSCI.5093-08.2009.
    1. Chorin E., Vinograd O., Fleidervish I., Gilad D., Herrmann S., Sekler I., Aizenman E., Hershfinkel M. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J. Neurosci. 2011;31:12916–12926. doi: 10.1523/JNEUROSCI.2205-11.2011.
    1. Sharir H., Zinger A., Nevo A., Sekler I., Hershfinkel M. Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J. Biol. Chem. 2010;285:26097–26106. doi: 10.1074/jbc.M110.107490.
    1. Ho H.C., Suarez S.S. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility. Biol. Reprod. 2001;65:1606–1615. doi: 10.1095/biolreprod65.5.1606.
    1. Wiser A., Sachar S., Ghetler Y., Shulman A., Breitbart H. Assessment of sperm hyperactivated motility and acrosome reaction can discriminate the use of spermatozoa for conventional in vitro fertilisation or intracytoplasmic sperm injection: Preliminary results. Andrologia. 2014;46:313–315. doi: 10.1111/and.12068.
    1. Shabtay O., Breitbart H. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Dev. Biol. 2016;415:64–74. doi: 10.1016/j.ydbio.2016.05.008.
    1. Huta Y., Nitzan Y., Breitbart H. Ezrin protects bovine spermatozoa from spontaneous acrosome reaction. Theriogenology. 2020;151:119–127. doi: 10.1016/j.theriogenology.2020.04.019.
    1. Tsirulnikov E., Huta Y., Breitbart H. PKA and PI3K activities during capacitation protect sperm from undergoing spontaneous acrosome reaction. Theriogenology. 2019;128:54–61. doi: 10.1016/j.theriogenology.2019.01.036.
    1. Ackermann F., Zitranski N., Borth H., Buech T., Gudermann T., Boekhoff I. CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J. Cell Sci. 2009;122:4547–4557. doi: 10.1242/jcs.058263.
    1. Kobayashi T., Miyazaki T., Natori M., Nozawa S. Protective role of superoxide dismutase in human sperm motility: Superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum. Reprod. 1991;6:987–991. doi: 10.1093/oxfordjournals.humrep.a137474.
    1. Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am. J. Clin. Nutr. 1991;54:1119S–1124S. doi: 10.1093/ajcn/54.6.1119s.
    1. Nallella K.P., Sharma R.K., Allamaneni S.S., Aziz N., Agarwal A. Cryopreservation of human spermatozoa: Comparison of two cryopreservation methods and three cryoprotectants. Fertil. Steril. 2004;82:913–918. doi: 10.1016/j.fertnstert.2004.02.126.
    1. Critser J.K., Huse-Benda A.R., Aaker D.V., Arneson B.W., Ball G.D. Cryopreservation of human spermatozoa. III. The effect of cryoprotectants on motility. Fertil. Steril. 1988;50:314–320. doi: 10.1016/S0015-0282(16)60079-1.
    1. Aitken R.J., De Iuliis G.N., McLachlan R.I. Biological and clinical significance of DNA damage in the male germ line. Int. J. Androl. 2009;32:46–56. doi: 10.1111/j.1365-2605.2008.00943.x.
    1. Zribi N., Feki Chakroun N., El Euch H., Gargouri J., Bahloul A., Ammar Keskes L. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil. Steril. 2010;93:159–166. doi: 10.1016/j.fertnstert.2008.09.038.
    1. O’Connell M., McClure N., Lewis S.E. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 2002;17:704–709. doi: 10.1093/humrep/17.3.704.
    1. Chow C.K. Vitamin E and oxidative stress. Free Radic. Biol. Med. 1991;11:215–232. doi: 10.1016/0891-5849(91)90174-2.
    1. Donnelly E.T., McClure N., Lewis S.E. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14:505–512. doi: 10.1093/mutage/14.5.505.
    1. Wu J., Wu S., Xie Y., Wang Z., Wu R., Cai J., Luo X., Huang S., You L. Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques. Reprod. Biomed. Online. 2015;30:334–339. doi: 10.1016/j.rbmo.2014.12.008.
    1. Berkovitz A., Allouche-Fitoussi D., Izhakov D., Breitbart H. Cryopreservation of human sperm in the presence of Zn2+ increases the motility rate. J. Obs. Gynecol. Investig. 2018;1:6–12.
    1. Tuerk M.J., Fazel N. Zinc deficiency. Curr. Opin. Gastroenterol. 2009;25:136–143. doi: 10.1097/MOG.0b013e328321b395.
    1. Blazak W.F., Overstreet J.W. Instability of nuclear chromatin in the ejaculated spermatozoa of fertile men. J. Reprod. Fertil. 1982;65:331–339. doi: 10.1530/jrf.0.0650331.
    1. Kotdawala A.P., Kumar S., Salian S.R., Thankachan P., Govindraj K., Kumar P., Kalthur G., Adiga S.K. Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function. J. Assist. Reprod. Genet. 2012;29:1447–1453. doi: 10.1007/s10815-012-9894-8.
    1. Bettger W.J., O’Dell B.L. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981;28:1425–1438. doi: 10.1016/0024-3205(81)90374-X.
    1. Kendall N.R., McMullen S., Green A., Rodway R.G. The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Anim. Reprod. Sci. 2000;62:277–283. doi: 10.1016/S0378-4320(00)00120-2.
    1. Rasmussen J.W., Martinez E., Louka P., Wingett D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010;7:1063–1077. doi: 10.1517/17425247.2010.502560.
    1. Isaac A.V., Kumari S., Nair R., Urs D.R., Salian S.R., Kalthur G., Adiga S.K., Manikkath J., Mutalik S., Sachdev D., et al. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochem. Biophys. Res. Commun. 2017;494:656–662. doi: 10.1016/j.bbrc.2017.10.112.
    1. Li Z., Li Y., Zhou X., Cao Y., Li C. Preventive effects of supplemental dietary zinc on heat-induced damage in the epididymis of boars. J. Therm. Biol. 2017;64:58–66. doi: 10.1016/j.jtherbio.2017.01.002.
    1. Schisterman E.F., Sjaarda L.A., Clemons T., Carrell D.T., Perkins N.J., Johnstone E., Lamb D., Chaney K., Van Voorhis B.J., Ryan G., et al. Effect of Folic Acid and Zinc Supplementation in Men on Semen Quality and Live Birth Among Couples Undergoing Infertility Treatment: A Randomized Clinical Trial. JAMA. 2020;323:35–48. doi: 10.1001/jama.2019.18714.

Source: PubMed

3
Tilaa