Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy

Eric Wenzler, David Butler, Xing Tan, Takayuki Katsube, Toshihiro Wajima, Eric Wenzler, David Butler, Xing Tan, Takayuki Katsube, Toshihiro Wajima

Abstract

Background: The need for continuous renal replacement therapy (CRRT) in critically ill patients with serious infections is associated with clinical failure, emergence of resistance, and excess mortality. These poor outcomes are attributable in large part to subtherapeutic antimicrobial exposure and failure to achieve target pharmacokinetic/pharmacodynamic (PK/PD) thresholds during CRRT. Cefiderocol is a novel siderophore cephalosporin with broad in vitro activity against resistant pathogens and is often used to treat critically ill patients, including those receiving CRRT, despite the lack of data to guide dosing in this population.

Objective: The aim of this study was to evaluate the PK and PD of cefiderocol during in vitro and in vivo CRRT and provide optimal dosing recommendations.

Methods: The PK and dialytic clearance of cefiderocol was evaluated via an established in vitro CRRT model across various modes, filter types, and effluent flow rates. These data were combined with in vivo PK data from nine patients receiving cefiderocol while receiving CRRT from phase III clinical trials. Optimal dosing regimens and their respective probability of target attainment (PTA) were assessed via an established population PK model with Bayesian estimation and 1000-subject Monte Carlo simulations at each effluent flow rate.

Results: The overall mean sieving/saturation coefficient during in vitro CRRT was 0.90 across all modes, filter types, effluent flow rates, and points of replacement fluid dilution tested. Adsorption was negligible at 10.9%. Three-way analysis of variance (ANOVA) and multiple linear regression analyses demonstrated that effluent flow rate is the primary driver of clearance during CRRT and can be used to calculate optimal cefiderocol doses required to match the systemic exposure observed in patients with normal renal function. Bayesian estimation of these effluent flow rate-based optimal doses in nine patients receiving CRRT from the phase III clinical trials of cefiderocol revealed comparable mean (± standard deviation) area under the concentration-time curve values as patients with normal renal function (1709 ± 539 mg·h/L vs. 1494 ± 58.4 mg·h/L; p = 0.26). Monte Carlo simulations confirmed these doses achieved >90% PTA against minimum inhibitory concentrations ≤4 mg/L at effluent flow rates from 0.5 to 5 L/h.

Conclusion: The optimal dosing regimens developed from this work have been incorporated into the prescribing information for cefiderocol, making it the first and only antimicrobial with labeled dosing for CRRT. Future clinical studies are warranted to confirm the efficacy and safety of these regimens.

Trial registration: ClinicalTrials.gov NCT03032380 NCT02714595 NCT02321800.

Conflict of interest statement

Eric Wenzler serves on the speaker’s bureau for Melinta Therapeutics, Astellas Pharma, and Allergan Plc., and on the advisory board for GenMark Diagnostics and Shionogi & Co., Ltd. Takayuki Katsube is currently an employee of Shionogi & Co., Ltd, and Toshihiro Wajima was an employee of Shionogi & Co., Ltd at the time of this work. David Butler and Xing Tan certify no potential conflicts of interest.

© 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Figures

Fig. 1
Fig. 1
Pre-filter plasma concentration-time profiles of cefiderocol during in vitro CVVH and CVVHD at each rate and point of dilution with the HF1400 filter (left) and M150 filter (right). Mean values are displayed with error bars representing standard deviations. CVVH continuous veno-venous hemofiltration, CVVHD continuous veno-venous hemodialysis
Fig. 2
Fig. 2
Individual observed plasma cefiderocol concentration-time profiles for the nine patients receiving CRRT in phase III trials. Each color and symbol combination represents a unique patient (one patient was sampled on days 3 and 9). CRRT continuous renal replacement therapy
Fig. 3
Fig. 3
Individual predicted plasma concentration-time profiles for the nine patients receiving CRRT at optimal effluent flow rate-based dosing regimens (red lines) and the 95% prediction interval of plasma concentrations for patients not undergoing CRRT receiving cefiderocol 2 g every 8 h in phase III trials (gray shaded area). CRRT continuous renal replacement therapy
Fig. 4
Fig. 4
Probability of attaining 75% fT>MIC for patients receiving CRRT and optimal effluent flow rate-based dosing regimens. fT>MIC free time above the minimum inhibitory concentration, CRRT continuous renal replacement therapy, MIC minimum inhibitory concentration, qxh every x hours

References

    1. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Available at: Accessed 20 Feb 2020.
    1. Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 us hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–1814.
    1. Kadri SS, Lai YLE, Ricotta EE, Strich JR, Babiker A, Rhee C, et al. External validation of difficult-to-treat resistance prevalence and mortality risk in gram-negative bloodstream infection using electronic health record data from 140 US hospitals. Open Forum Infect Dis. 2019;6(4):110. doi: 10.1093/ofid/ofz110.
    1. Huh K, Chung DR, Ha YE, Ko JH, Kim SH, Kim MJ, et al. Impact of difficult-to-treat resistance in gram-negative bacteremia on mortality: retrospective analysis of nationwide surveillance data. Clin Infect Dis. 2020;71(9):e487–e496. doi: 10.1093/cid/ciaa055.
    1. Richter SE, Miller L, Needleman J, Uslan DZ, Bell D, Watson K, et al. Risk factors for development of carbapenem resistance among gram-negative rods. Open Forum Infect Dis. 2019;6(3):027. doi: 10.1093/ofid/ofz027.
    1. Lat I, Daley MJ, Shewale A, Pangrazzi MH, Hammond D, Olsen KM, et al. A multicenter, prospective, observational study to determine predictive factors for multidrug-resistant pneumonia in critically ill adults: the DEFINE study. Pharmacotherapy. 2019;39(3):253–260. doi: 10.1002/phar.2171.
    1. van Loon K, Voor Holt AF, Vos MC. A systematic review and meta-analyses of the clinical epidemiology of carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 2018;62(1):e01730–e1817.
    1. Alexander EL, Loutit J, Tumbarello M, Wunderink R, Felton T, Daikos G, et al. Carbapenem-resistant enterobacteriaceae infections: results from a retrospective series and implications for the design of prospective clinical trials. Open Forum Infect Dis. 2017;4(2):63. doi: 10.1093/ofid/ofx063.
    1. Shields RK, Nguyen MH, Chen L, Press EG, Kreiswirth BN, Clancy CJ. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(5):e02497–e2517. doi: 10.1128/AAC.02497-17.
    1. Shields RK, McCreary EK, Marini RV, Kline EG, Jones CE, Hao B, et al. Early experience with meropenem-vaborbactam for treatment of carbapenem-resistant enterobacteriaceae infections. Clin Infect Dis. 2019;71(3):667–671. doi: 10.1093/cid/ciz1131.
    1. Eilertson B, Cober E, Richter SS, Perez F, Salata RA, Kalayjian RC, et al. Carbapenem-resistant enterobacteriaceae infections in patients on renal replacement therapy. Open Forum Infect Dis. 2017;4(4):216. doi: 10.1093/ofid/ofx216.
    1. Bassetti M, Vena A, Giacobbe DR, Falcone M, Tiseo G, Giannella M, et al. Ceftolozane/tazobactam for treatment of severe esbl-producing enterobacterales infections: A multicenter nationwide clinical experience (CEFTABUSE II Study) Open Forum Infect Dis. 2020;7(5):139. doi: 10.1093/ofid/ofaa139.
    1. Jamal JA, Mueller BA, Choi GY, Lipman J, Roberts JA. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis. 2015;82(1):92–103. doi: 10.1016/j.diagmicrobio.2015.01.013.
    1. Beumier M, Roberts JA, Kabtouri H, Hites M, Cotton F, Wolff F, et al. A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy. J Antimicrob Chemother. 2013;68(12):2859–2865. doi: 10.1093/jac/dkt261.
    1. Roberts JA, Udy AA, Bulitta JB, Stuart J, Jarrett P, Starr T, et al. Doripenem population pharmacokinetics and dosing requirements for critically ill patients receiving continuous venovenous haemodiafiltration. J Antimicrob Chemother. 2014;69(9):2508–2516. doi: 10.1093/jac/dku177.
    1. Roberts DM, Liu X, Roberts JA, Nair P, Cole L, Roberts MS, et al. A multicenter study on the effect of continuous hemodiafiltration intensity on antibiotic pharmacokinetics. Crit Care. 2015;19:84. doi: 10.1186/s13054-015-0818-8.
    1. Jamal JA, Udy AA, Wallis SC, Ranganathan D, McWhinney BC, Ungerer JP, et al. Can we use an ex vivo continuous hemofiltration model to describe the adsorption and elimination of meropenem and piperacillin? Int J Artif Organs. 2015;38(8):419–424. doi: 10.5301/ijao.5000422.
    1. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Bruggemann RJ, et al. Caspofungin population pharmacokinetics in critically ill patients undergoing continuous veno-venous haemofiltration or haemodiafiltration. Clin Pharmacokinet. 2017;56(9):1057–1068. doi: 10.1007/s40262-016-0495-z.
    1. Churchwell MD. Use of an in vitro model of renal replacement therapy systems to estimate extracorporeal drug removal. J Clin Pharmacol. 2012;52(1 Suppl):35s–44s.
    1. Bulitta JB, Hope WW, Eakin AE, Guina T, Tam VH, Louie A, et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob Agents Chemother. 2019;63(5):e02307–e2318. doi: 10.1128/AAC.02307-18.
    1. Abdul-Mutakabbir JC, Alosaimy S, Morrisette T, Kebriaei R, Rybak MJ. Cefiderocol: a novel siderophore cephalosporin against multidrug-resistant gram-negative pathogens. Pharmacotherapy. 2020;40(12):1228–1247. doi: 10.1002/phar.2476.
    1. McCreary EK, Heil EL, Tamma PD. New perspectives on antimicrobial agents: cefiderocol. Antimicrob Agents Chemother. 2021;65(8):e0217120. doi: 10.1128/AAC.02171-20.
    1. Antimicrobial Drugs Advisory Committee. Cefiderocol Briefing Document NDA # 209445. Advisory Committee Meeting. 16 Oct 2019.
    1. Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious diseases society of america antimicrobial resistant treatment guidance: gram-negative bacterial infections. Clin Infect Dis. 2020;2:2.
    1. Gatti M, Pea F. Pharmacokinetic/pharmacodynamic target attainment in critically ill renal patients on antimicrobial usage: focus on novel beta-lactams and beta lactams/beta-lactamase inhibitors. Expert Rev Clin Pharmacol. 2021;14(5):583–599. doi: 10.1080/17512433.2021.1901574.
    1. Wu X, Clancy CJ, Rivosecchi RM, Zhao W, Shields RK, Marini RV, et al. Pharmacokinetics of intravenous isavuconazole in solid-organ transplant recipients. Antimicrob Agents Chemother. 2018;62(12):e01643–e1718. doi: 10.1128/AAC.01643-18.
    1. PRISMAFLEX System M60/M100/M150 Hemofilter Sets. 2016 [cited 12 Jun 2020]. Available at:
    1. PRISMAFLEX System HF1000/HF1400 Hemofilter Sets. 2016 [cited 12 Jun 2020]. Available at:
    1. Sanabria C, Migoya E, Mason JW, Stanworth SH, Katsube T, Machida M, et al. Effect of cefiderocol, a siderophore cephalosporin, on QT/QTc interval in healthy adult subjects. Clin Ther. 2019;41(9):1724–1736. doi: 10.1016/j.clinthera.2019.07.006.
    1. Wunderink RG, Matsunaga Y, Ariyasu M, Clevenbergh P, Echols R, Kaye KS, et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2021;21(2):213–225. doi: 10.1016/S1473-3099(20)30731-3.
    1. Bassetti M, Echols R, Matsunaga Y, Ariyasu M, Doi Y, Ferrer R, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21(2):226–240. doi: 10.1016/S1473-3099(20)30796-9.
    1. Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Dose adjustment of S-649266, a siderophore cephalosporin, for patients requiring haemodialysis [poster 1311]. Presented at the 26th European Congress of Clinical Microbiology and Infectious Diseases, 9–12 April 2016: Amsterdam.
    1. Malone RS, Fish DN, Abraham E, Teitelbaum I. Pharmacokinetics of cefepime during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 2001;45(11):3148–3155. doi: 10.1128/AAC.45.11.3148-3155.2001.
    1. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research and Center for Veterinary Medicine. Bioanalytical Method Validation: Guidance for Industry. 2013. Avialable at . Accessed 20 Feb 2020. .
    1. Kawaguchi N, Katsube T, Echols R, Wajima T. Population pharmacokinetic and pharmacokinetic/pharmacodynamic analyses of cefiderocol, a parenteral siderophore cephalosporin, in patients with pneumonia, bloodstream infection/sepsis, or complicated urinary tract infection. Antimicrob Agents Chemother. 2021;65(3):e01437–e1520. doi: 10.1128/AAC.01437-20.
    1. Golper TA, Wedel SK, Kaplan AA, Saad AM, Donta ST, Paganini EP. Drug removal during continuous arteriovenous hemofiltration: theory and clinical observations. Int J Artif Organs. 1985;8(6):307–312.
    1. Churchwell MD, Pasko DA, Mueller BA. Daptomycin clearance during modeled continuous renal replacement therapy. Blood Purif. 2006;24(5–6):548–554. doi: 10.1159/000097078.
    1. Schetz M. Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care. 2007;13(6):645–651. doi: 10.1097/MCC.0b013e3282f0a3d3.
    1. Sime FB, Pandey S, Karamujic N, Parker S, Alexander E, Loutit J, et al. Ex vivo characterization of effects of renal replacement therapy modalities and settings on pharmacokinetics of meropenem and vaborbactam. Antimicrob Agents Chemother. 2018;62(10):e01306–e1318. doi: 10.1128/AAC.01306-18.
    1. Kawaguchi N, Katsube T, Echols R, Wajima T. Population pharmacokinetic analysis of cefiderocol, a parenteral siderophore cephalosporin, in healthy subjects, subjects with various degrees of renal function, and patients with complicated urinary tract infection or acute uncomplicated pyelonephritis. Antimicrob Agents Chemother. 2018;62(2):e01391–e1417. doi: 10.1128/AAC.01391-17.
    1. Katsube T, Echols R, Arjona Ferreira JC, Krenz HK, Berg JK, Galloway C. Cefiderocol, a siderophore cephalosporin for gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. J Clin Pharmacol. 2017;57(5):584–591. doi: 10.1002/jcph.841.
    1. FETROJA (cefiderocol) [package insert]. Florham Park, NJ; Shionogi & Co., Ltd. Revised September 2020. Available at: . Accessed 5 May 2021.
    1. Nakamura R, Ito-Horiyama T, Takemura M, Toba S, Matsumoto S, Ikehara T, et al. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother. 2019;63(9):e02031–e2118. doi: 10.1128/AAC.02031-18.
    1. Matsumoto S, Singley CM, Hoover J, Nakamura R, Echols R, Rittenhouse S, et al. Efficacy of cefiderocol against carbapenem-resistant gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics. Antimicrob Agents Chemother. 2017;61(9):e00700–e717. doi: 10.1128/AAC.00700-17.
    1. Troyanov S, Cardinal J, Geadah D, Parent D, Courteau S, Caron S, et al. Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using Multiflow-100 and HF1000 filters. Nephrol Dial Transplant. 2003;18(5):961–966. doi: 10.1093/ndt/gfg055.
    1. Ricci Z, Ronco C, D'Amico G, De Felice R, Rossi S, Bolgan I, et al. Practice patterns in the management of acute renal failure in the critically ill patient: an international survey. Nephrol Dial Transplant. 2006;21(3):690–696. doi: 10.1093/ndt/gfi296.
    1. Vaidya M. Continuous Renal Replacement Therapy Industry Worth 1.1 Billion USD by 2020. 3 Jul 2016. Available at: . Accessed 17 Jul 2021.
    1. Trivedi A, Lee RE, Meibohm B. Applications of pharmacometrics in the clinical development and pharmacotherapy of anti-infectives. Expert Rev Clin Pharmacol. 2013;6(2):159–170. doi: 10.1586/ecp.13.6.
    1. Hoff BM, Maker JH, Dager WE, Heintz BH. Antibiotic dosing for critically ill adult patients receiving intermittent hemodialysis, prolonged intermittent renal replacement therapy, and continuous renal replacement therapy: an update. Ann Pharmacother. 2020;54(1):43–55. doi: 10.1177/1060028019865873.
    1. Wenzler E, Bunnell KL, Bleasdale SC, Benken S, Danziger LH, Rodvold KA. Pharmacokinetics and dialytic clearance of ceftazidime-avibactam in a critically ill patient on continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2017;61(7):e00464–e517. doi: 10.1128/AAC.00464-17.
    1. Bunnell KL, Wenzler E, Danziger LH, Rodvold KA. Clearance of ceftazidime-avibactam in an in vitro continuous venovenous hemodialysis model. Open Forum Infect Dis. 2017;4(Suppl 1):S294–S295. doi: 10.1093/ofid/ofx163.675.
    1. Sime FB, Lassig-Smith M, Starr T, Stuart J, Pandey S, Parker SL, et al. A population pharmacokinetic model-guided evaluation of ceftolozane-tazobactam dosing in critically ill patients undergoing continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 2019;64(1):e01655–e1719. doi: 10.1128/AAC.01655-19.
    1. Kufel WD, Eranki AP, Paolino KM, Call A, Miller CD, Mogle BT. In vivo pharmacokinetic analysis of meropenem/vaborbactam during continuous venovenous haemodialysis. J Antimicrob Chemother. 2019;74(7):2117–2118. doi: 10.1093/jac/dkz103.
    1. Jang SM, Yessayan L, Dean M, et al. Relebactam and imipenem clearance during ex vivo continuous renal replacement therapy [poster P1959]. Presented at the 29th ECCMID; 13-16 April 2019: Amsterdam.
    1. Gatti M, Pea F. Antimicrobial dose reduction in continuous renal replacement therapy: myth or real need? A practical approach for guiding dose optimization of novel antibiotics. Clin Pharmacokinet. 2021;60(10):1271–1289. doi: 10.1007/s40262-021-01040-y.
    1. Fratoni AJ, Kuti JL, Nicolau DP. Optimized cefiderocol exposures in a successfully treated critically ill patient with polymicrobial stenotrophomonas maltophilia bacteremia and pneumonia receiving continuous venovenous hemodiafiltration. Int J Antimicrob Agents. 2021;58(3):106395. doi: 10.1016/j.ijantimicag.2021.106395.
    1. Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens*. Crit Care Med. 2014;42(7):1640–1650. doi: 10.1097/CCM.0000000000000317.
    1. Yamano Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin Infect Dis. 2019;69(Suppl 7):S544–S551. doi: 10.1093/cid/ciz827.
    1. Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet. 2019;58(11):1407–1443. doi: 10.1007/s40262-019-00791-z.
    1. Chaijamorn W, Shaw AR, Lewis SJ, Mueller BA. Ex vivo ceftolozane/tazobactam clearance during continuous renal replacement therapy. Blood Purif. 2017;44(1):16–23. doi: 10.1159/000455897.
    1. Lewis SJ, Switaj LA, Mueller BA. Tedizolid adsorption and transmembrane clearance during in vitro continuous renal replacement therapy. Blood Purif. 2015;40(1):66–71. doi: 10.1159/000430904.
    1. Kesner JM, Yardman-Frank JM, Mercier RC, Wong CS, Walker SE, Argyres DP, et al. Trimethoprim and sulfamethoxazole transmembrane clearance during modeled continuous renal replacement therapy. Blood Purif. 2014;38(3–4):195–202. doi: 10.1159/000368884.
    1. Jang SM, Hough G, Mueller BA. Ex vivo rezafungin adsorption and clearance during continuous renal replacement therapy. Blood Purif. 2018;46(3):214–219. doi: 10.1159/000489212.
    1. Akers KS, Rowan MP, Niece KL, Stewart IJ, Mende K, Cota JM, et al. Colistin pharmacokinetics in burn patients during continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2015;59(1):46–52. doi: 10.1128/AAC.03783-14.
    1. Uchino S, Cole L, Morimatsu H, Goldsmith D, Bellomo R. Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med. 2002;28(11):1664–1667. doi: 10.1007/s00134-002-1495-z.
    1. Janssen PK, Foudraine NA, Burgers DM, Neef K, le Noble JL. Population pharmacokinetics of cefuroxime in critically ill patients receiving continuous venovenous hemofiltration with regional citrate anticoagulation and a phosphate-containing replacement fluid. Ther Drug Monit. 2016;38(6):699–705. doi: 10.1097/FTD.0000000000000330.
    1. Tegeder I, Bremer F, Oelkers R, Schobel H, Schüttler J, Brune K, et al. Pharmacokinetics of imipenem-cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother. 1997;41(12):2640–2645. doi: 10.1128/AAC.41.12.2640.
    1. Boucher BA, Hudson JQ, Hill DM, Swanson JM, Wood GC, Laizure SC, et al. Pharmacokinetics of imipenem/cilastatin burn intensive care unit patients undergoing high-dose continuous venovenous hemofiltration. Pharmacotherapy. 2016;36(12):1229–1237. doi: 10.1002/phar.1866.
    1. Kiser TH, Fish DN, Aquilante CL, Rower JE, Wempe MF, MacLaren R, et al. Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit Care. 2015;19(1):32. doi: 10.1186/s13054-015-0753-8.
    1. Li AM, Gomersall CD, Choi G, Tian Q, Joynt GM, Lipman J. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother. 2009;64(5):929–937. doi: 10.1093/jac/dkp302.
    1. Charlson ME, Peterson JC, Krieger KH, Hartman GS, Hollenberg JP, Briggs WM, et al. Improvement of outcomes after coronary artery bypass II: a randomized trial comparing intraoperative high versus customized mean arterial pressure. J Card Surg. 2007;22(6):465–472. doi: 10.1111/j.1540-8191.2007.00471.x.
    1. Center for Drug Evaluation and Research. Application Number: 209445Orig1s00. Multi-Disciplinary Review and Evaluation NDA 209445: FETROJA (cefiderocol for Injection).
    1. Maynor LM, Carl DE, Matzke GR, Gehr TW, Farthing C, Farthing D, et al. An in vivo-in vitro study of cefepime and cefazolin dialytic clearance during high-flux hemodialysis. Pharmacotherapy. 2008;28(8):977–983. doi: 10.1592/phco.28.8.977.
    1. Allaouchiche B, Breilh D, Jaumain H, Gaillard B, Renard S, Saux MC. Pharmacokinetics of cefepime during continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 1997;41(11):2424–2427. doi: 10.1128/AAC.41.11.2424.
    1. Isla A, Gascon AR, Maynar J, Arzuaga A, Toral D, Pedraz JL. Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther. 2005;27(5):599–608. doi: 10.1016/j.clinthera.2005.05.004.
    1. Andrews L, Benken S, Tan X, Wenzler E. Pharmacokinetics and dialytic clearance of apixaban during in vitro continuous renal replacement therapy. BMC Nephrol. 2021;22(1):45. doi: 10.1186/s12882-021-02248-7.
    1. Tian Q, Gomersall CD, Ip M, Tan PE, Joynt GM, Choi GYS. Adsorption of amikacin, a significant mechanism of elimination by hemofiltration. Antimicrob Agents Chemother. 2008;52(3):1009–1013. doi: 10.1128/AAC.00858-07.
    1. Choi G, Gomersall CD, Lipman J, Wong A, Joynt GM, Leung P, et al. The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents. 2004;24(5):468–472.
    1. Honore PM, Spapen HD. What a clinician should know about a renal replacement membrane? J Transl Int Med. 2018;6(2):62–65. doi: 10.2478/jtim-2018-0016.
    1. Vilay AM, Churchwell MD, Mueller BA. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit Care. 2008;12(6):235. doi: 10.1186/cc7093.
    1. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37(7):2268–2282. doi: 10.1097/CCM.0b013e3181aab3d0.
    1. Wenzler E, Biagi M, Tan X, Butler DA. Reply to baud and houze: "should in vitro and in vivo studies on antimicrobial agents during continuous renal replacement therapy comply with general principles of pharmacokinetics?". Antimicrob Agents Chemother. 2020;64(6):e00401–e420. doi: 10.1128/AAC.00401-20.

Source: PubMed

3
Tilaa