A high-protein total diet replacement alters the regulation of food intake and energy homeostasis in healthy, normal-weight adults

Camila L P Oliveira, Normand G Boulé, Sarah A Elliott, Arya M Sharma, Mario Siervo, Aloys Berg, Sunita Ghosh, Carla M Prado, Camila L P Oliveira, Normand G Boulé, Sarah A Elliott, Arya M Sharma, Mario Siervo, Aloys Berg, Sunita Ghosh, Carla M Prado

Abstract

Purpose: Dietary intake can affect energy homeostasis and influence body weight control. The aim of this study was to compare the impact of high-protein total diet replacement (HP-TDR) versus a control (CON) diet in the regulation of food intake and energy homeostasis in healthy, normal-weight adults.

Methods: In this acute randomized controlled, cross-over study, participants completed two isocaloric arms: a) HP-TDR: 35% carbohydrate, 40% protein, and 25% fat; b) CON: 55% carbohydrate, 15% protein, and 30% fat. The diets were provided for 32 h while inside a whole-body calorimetry unit. Appetite sensations, appetite-related hormones, and energy metabolism were assessed.

Results: Forty-three healthy, normal-weight adults (19 females) participated. Appetite sensations did not differ between diets (all p > 0.05). Compared to the CON diet, the change in fasting blood markers during the HP-TDR intervention was smaller for peptide tyrosine-tyrosine (PYY; - 18.9 ± 7.9 pg/mL, p = 0.02) and greater for leptin (1859 ± 652 pg/mL, p = 0.007). Moreover, postprandial levels of glucagon-like peptide 1 (1.62 ± 0.36 pM, p < 0.001) and PYY (31.37 ± 8.05 pg/mL, p < 0.001) were higher in the HP-TDR. Significant correlations were observed between energy balance and satiety (r = - 0.41, p = 0.007), and energy balance and PFC (r = 0.33, p = 0.033) in the HP-TDR.

Conclusion: Compared to the CON diet, the HP-TDR increased blood levels of anorexigenic hormones. Moreover, females and males responded differently to the intervention in terms of appetite sensations and appetite-related hormones.

Trial registration: NCT02811276 (retrospectively registered on 16 June 2016) and NCT03565510 (retrospectively registered on 11 June 2018).

Keywords: Appetite; Appetite-related hormones; Energy homeostasis; Protein; Total diet replacement.

Conflict of interest statement

In addition to what was mentioned above, Camila L. P. Oliveira received travel fees from Almased Wellness GmbH. Arya M. Sharma and Carla M. Prado have received travel and speaker fees unrelated to this study. Aloys Berg has received consulting fees.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Overview of the experimental protocol. VO2 volume of oxygen, VCO2 volume of carbon dioxide, N nitrogen
Fig. 2
Fig. 2
Energy expenditure (panel a), macronutrient oxidation rates (panels b, c, and d), energy balance (panel e), and macronutrient balances (panels f, g, and h) during the CON and HP-TDR interventions. Values are mean (standard deviation). N = 43 (females N = 19; males N = 24). *Significant difference between the HP-TDR and CON diets, p < 0.01 as assessed by a mixed analysis of variance. CON control, HP-TDR high-protein total diet replacement. This data have been reported in detail elsewhere [27]
Fig. 3
Fig. 3
Interaction between diet and sex on 24-h AUC for PFC (p = 0.04). Data are presented as mean ± standard deviation. N = 43 (N = 19 females; N = 24 males). In females, the 24-h AUC for PFC was lower with the HP-TDR compared to the CON diet, p = 0.04 as assessed by a post hoc test for a mixed analysis of variance. In the HP-TDR diet, the 24-h AUC for PFC was lower in females compared to males, p = 0.05 as assessed by a post hoc test for a mixed analysis of variance. AUC area under the curve, CON control, HP-TDR high-protein total diet replacement, PFC prospective food consumption

References

    1. Freire RH, Alvarez-Leite JI. Appetite control: hormones or diet strategies? Curr Opin Clin Nutr Metab Care. 2020;23(5):328–335. doi: 10.1097/MCO.0000000000000675.
    1. Miller GD. Appetite regulation: hormones, peptides, and neurotransmitters and their role in obesity. Am J Lifestyle Med. 2019;13(6):586–601. doi: 10.1177/1559827617716376.
    1. Zanchi D, Depoorter A, Egloff L, Haller S, Mählmann L, Lang UE, Drewe J, Beglinger C, Schmidt A, Borgwardt S. The impact of gut hormones on the neural circuit of appetite and satiety: a systematic review. Neurosci Biobehav Rev. 2017;80:457–475. doi: 10.1016/j.neubiorev.2017.06.013.
    1. Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15(10):1350–1355. doi: 10.1038/nn.3217.
    1. Miller ER, Ullrey DE. The pig as a model for human nutrition. Annu Rev Nutr. 1987;7:361–382. doi: 10.1146/annurev.nu.07.070187.002045.
    1. Perry B, Wang Y. Appetite regulation and weight control: the role of gut hormones. Nutr Diabetes. 2012;2:e26. doi: 10.1038/nutd.2011.21.
    1. Lori A, Nori G. Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1251. doi: 10.1098/rstb.2006.1860.
    1. Cornier M-A, Salzberg AK, Endly DC, Bessesen DH, Tregellas JR. Sex-based differences in the behavioral and neuronal responses to food. Physiol Behav. 2010;99(4):538–543. doi: 10.1016/j.physbeh.2010.01.008.
    1. Brennan IM, Feltrin KL, Nair NS, Hausken T, Little TJ, Gentilcore D, Wishart JM, Jones KL, Horowitz M, Feinle-Bisset C. Effects of the phases of the menstrual cycle on gastric emptying, glycemia, plasma GLP-1 and insulin, and energy intake in healthy lean women. Am J Physiol Gastrointest Liver Physiol. 2009;297(3):G602–610. doi: 10.1152/ajpgi.00051.2009.
    1. Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1215–1267. doi: 10.1152/ajpregu.00446.2012.
    1. Soeliman FA, Azadbakht L. Weight loss maintenance: a review on dietary related strategies. J Res Med Sci. 2014;19(3):268–275.
    1. Brown A, Dornhorst A, McGowan B, Omar O, Leeds AR, Taheri S, Frost GS. Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: a randomized trial. BMJ Open Diabetes Res Care. 2020;8(1):e001012. doi: 10.1136/bmjdrc-2019-001012.
    1. McCombie L, Brosnahan N, Ross H, Bell-Higgs A, Govan L, Lean MEJ. Filling the intervention gap: service evaluation of an intensive nonsurgical weight management programme for severe and complex obesity. J Hum Nutr Diet. 2019;32(3):329–337. doi: 10.1111/jhn.12611.
    1. Ard JD, Lewis KH, Rothberg A, Auriemma A, Coburn SL, Cohen SS, Loper J, Matarese L, Pories WJ, Periman S. Effectiveness of a total meal replacement program (OPTIFAST Program) on weight loss: results from the OPTIWIN study. Obesity. 2019;27(1):22–29. doi: 10.1002/oby.22303.
    1. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, Peters C, Zhyzhneuskaya S, Al-Mrabeh A, Hollingsworth KG, Rodrigues AM, Rehackova L, Adamson AJ, Sniehotta FF, Mathers JC, Ross HM, McIlvenna Y, Stefanetti R, Trenell M, Welsh P, Kean S, Ford I, McConnachie A, Sattar N, Taylor R. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–551. doi: 10.1016/s0140-6736(17)33102-1.
    1. Kahathuduwa CN, Davis T, O'Boyle M, Boyd LA, Chin SH, Paniukov D, Binks M. Effects of 3-week total meal replacement vs. typical food-based diet on human brain functional magnetic resonance imaging food-cue reactivity and functional connectivity in people with obesity. Appetite. 2018;120:431–441. doi: 10.1016/j.appet.2017.09.025.
    1. Astbury NM, Aveyard P, Nickless A, Hood K, Corfield K, Lowe R, Jebb SA. Doctor referral of overweight people to low energy total diet replacement treatment (DROPLET): pragmatic randomised controlled trial. BMJ. 2018;362:k3760. doi: 10.1136/bmj.k3760.
    1. Li Z, Tseng CH, Li Q, Deng ML, Wang M, Heber D. Clinical efficacy of a medically supervised outpatient high-protein, low-calorie diet program is equivalent in prediabetic, diabetic and normoglycemic obese patients. Nutr Diabetes. 2014;4(2):e105–e105. doi: 10.1038/nutd.2014.1.
    1. Henry RR, Wiest-Kent TA, Scheaffer L, Kolterman OG, Olefsky JM. Metabolic consequences of very-low-calorie diet therapy in obese non-insulin-dependent diabetic and nondiabetic subjects. Diabetes. 1986;35(2):155–164. doi: 10.2337/diab.35.2.155.
    1. Institute of Medicine . Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients) Washington, DC: The National Academies Press; 2005.
    1. Pesta DH, Samuel VT. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutr Metab (Lond) 2014;11(1):53–53. doi: 10.1186/1743-7075-11-53.
    1. Drummen M, Tischmann L, Gatta-Cherifi B, Adam T, Westerterp-Plantenga M. Dietary protein and energy balance in relation to obesity and co-morbidities. Front Endocrinol (Lausanne) 2018 doi: 10.3389/fendo.2018.00443.
    1. Lejeune MP, Westerterp KR, Adam TC, Luscombe-Marsh ND, Westerterp-Plantenga MS. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr. 2006;83(1):89–94. doi: 10.1093/ajcn/83.1.89.
    1. Jebb SA, Astbury NM, Tearne S, Nickless A, Aveyard P. Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) in primary care using total diet replacement products: a protocol for a randomised controlled trial. BMJ Open. 2017;7(8):e016709. doi: 10.1136/bmjopen-2017-016709.
    1. Oliveira CLP, Boulé NG, Sharma AM, Elliott S, Siervo M, Ghosh S, Berg A, Prado CM. Examining the effects of a high-protein total diet replacement on energy metabolism, metabolic blood markers, and appetite sensations in healthy adults: protocol for two complementary, randomized, controlled, crossover trials. Trials. 2019;20(1):787. doi: 10.1186/s13063-019-3950-y.
    1. Austin GL, Ogden LG, Hill JO. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am J Clin Nutr. 2011;93(4):836–843. doi: 10.3945/ajcn.110.000141.
    1. Oliveira CLP, Boulé NG, Sharma AM, Elliott SA, Siervo M, Ghosh S, Berg A, Prado CM. A high-protein total diet replacement increases energy expenditure and leads to negative fat balance in healthy, normal-weight adults. Am J Clin Nutr. 2020 doi: 10.1093/ajcn/nqaa283.
    1. Smith SR, de Jonge L, Zachwieja JJ, Roy H, Nguyen T, Rood JC, Windhauser MM, Bray GA. Fat and carbohydrate balances during adaptation to a high-fat diet. Am J Clin Nutr. 2000;71(2):450–457. doi: 10.1093/ajcn/71.2.450.
    1. Koohkan S, McCarthy DH, Berg A. The effect of a soy-yoghurt-honey product on excess weight and related health risk factors—a review. J Nutr Health Food Sci. 2017;5(2):1–10. doi: 10.15226/jnhfs.2017.00191.
    1. Brouwer E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (Oxygen intake and carbonic acid output) and urine-N. Acta Physiol Pharmacol Neerl. 1957;6:795–802.
    1. Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000 doi: 10.1038/sj.ijo.0801083.
    1. Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300(6719):230–235. doi: 10.1136/bmj.300.6719.230.
    1. Gilbert JA, Gasteyger C, Raben A, Meier DH, Astrup A, Sjodin A. The effect of tesofensine on appetite sensations. Obesity (Silver Spring, Md) 2012;20(3):553–561. doi: 10.1038/oby.2011.197.
    1. Bedard A, Hudon AM, Drapeau V, Corneau L, Dodin S, Lemieux S. Gender differences in the appetite response to a satiating diet. J Obes. 2015;2015:140139. doi: 10.1155/2015/140139.
    1. Westerterp-Plantenga MS, Lejeune MP, Smeets AJ, Luscombe-Marsh ND. Sex differences in energy homeostatis following a diet relatively high in protein exchanged with carbohydrate, assessed in a respiration chamber in humans. Physiol Behav. 2009;97(3–4):414–419. doi: 10.1016/j.physbeh.2009.03.010.
    1. Gregersen NT, Møller BK, Raben A, Kristensen ST, Holm L, Flint A, Astrup A. Determinants of appetite ratings: the role of age, gender, BMI, physical activity, smoking habits, and diet/weight concern. Food Nutr Res. 2011 doi: 10.3402/fnr.v55i0.7028.
    1. Buffenstein R, Poppitt SD, McDevitt RM, Prentice AM. Food intake and the menstrual cycle: a retrospective analysis, with implications for appetite research. Physiol Behav. 1995;58(6):1067–1077. doi: 10.1016/0031-9384(95)02003-9.
    1. Westerterp-Plantenga MS, Lemmens SG, Westerterp KR. Dietary protein—its role in satiety, energetics, weight loss and health. Br J Nutr. 2012;108(S2):S105–S112. doi: 10.1017/S0007114512002589.
    1. Mattes R. Fluid calories and energy balance: the good, the bad, and the uncertain. Physiol Behav. 2006;89(1):66–70. doi: 10.1016/j.physbeh.2006.01.023.
    1. Martens MJ, Lemmens SG, Born JM, Westerterp-Plantenga MS. A solid high-protein meal evokes stronger hunger suppression than a liquefied high-protein meal. Obesity (Silver Spring, Md) 2011;19(3):522–527. doi: 10.1038/oby.2010.258.
    1. Doucet É, McInis K, Mahmoodianfard S. Compensation in response to energy deficits induced by exercise or diet. Obes Rev. 2018;19(S1):36–46. doi: 10.1111/obr.12783.
    1. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126(1):126–132. doi: 10.1161/circulationaha.111.087213.
    1. Williams RL, Wood LG, Collins CE, Morgan PJ, Callister R. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women. Appetite. 2016;101:1–7. doi: 10.1016/j.appet.2016.02.153.
    1. Nicklas BJ, Katzel LI, Ryan AS, Dennis KE, Goldberg AP. Gender differences in the response of plasma leptin concentrations to weight loss in obese older individuals. Obes Res. 1997;5(1):62–68. doi: 10.1002/j.1550-8528.1997.tb00284.x.
    1. Mannucci E, Ognibene A, Becorpi A, Cremasco F, Pellegrini S, Ottanelli S, Rizzello SM, Massi G, Messeri G, Rotella CM. Relationship between leptin and oestrogens in healthy women. Eur J Endocrinol. 1998;139(2):198–201. doi: 10.1530/eje.0.1390198.
    1. Berg A, Koohkan S, Baer M, König D, Deibert P, Bisse E (2014) Influence of soy protein intake on blood isoflavone levels and thyroid hormones. German Diabetes Association. . Accessed 06 May 2020
    1. Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med. 2017;376(3):254–266. doi: 10.1056/NEJMra1514009.
    1. Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299(5608):853–855. doi: 10.1126/science.1079857.
    1. Bodnaruc AM, Prud'homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab (Lond) 2016;13:92–92. doi: 10.1186/s12986-016-0153-3.
    1. de Graaf C, Blom WA, Smeets PA, Stafleu A, Hendriks HF. Biomarkers of satiation and satiety. Am J Clin Nutr. 2004;79(6):946–961. doi: 10.1093/ajcn/79.6.946.
    1. Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006;4(3):223–233. doi: 10.1016/j.cmet.2006.08.001.
    1. Dougkas A, Östman E. Protein-enriched liquid preloads varying in macronutrient content modulate appetite and appetite-regulating hormones in healthy adults. J Nutr. 2016;146(3):637–645. doi: 10.3945/jn.115.217224.
    1. Koliaki C, Kokkinos A, Tentolouris N, Katsilambros N. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data. Int J Peptides. 2010;2010:710852. doi: 10.1155/2010/710852.

Source: PubMed

3
Tilaa