Human Milk Composition and Dietary Intakes of Breastfeeding Women of Different Ethnicity from the Manawatu-Wanganui Region of New Zealand

Christine A Butts, Duncan I Hedderley, Thanuja D Herath, Gunaranjan Paturi, Sarah Glyn-Jones, Frank Wiens, Bernd Stahl, Pramod Gopal, Christine A Butts, Duncan I Hedderley, Thanuja D Herath, Gunaranjan Paturi, Sarah Glyn-Jones, Frank Wiens, Bernd Stahl, Pramod Gopal

Abstract

Human milk is nutrient rich, complex in its composition, and is key to a baby's health through its role in nutrition, gastrointestinal tract and immune development. Seventy-eight mothers (19⁻42 years of age) of Asian, Māori, Pacific Island, or of European ethnicity living in Manawatu-Wanganui, New Zealand (NZ) completed the study. The women provided three breast milk samples over a one-week period (6⁻8 weeks postpartum), completed a three-day food diary and provided information regarding their pregnancy and lactation experiences. The breast milk samples were analyzed for protein, fat, fatty acid profile, ash, selected minerals (calcium, magnesium, selenium, zinc), and carbohydrates. Breast milk nutrient profiles showed no significant differences between the mothers of different ethnicities in their macronutrient (protein, fat, carbohydrate, and moisture) content. The breast milk of Asian mothers contained significantly higher levels of polyunsaturated fatty acids (PUFAs), omega-3 (n-3) and omega-6 (n-6) fatty acids, docosahexaenoic acid (DHA), and linoleic acids. Arachidonic acid was significantly lower in the breast milk of Māori and Pacific Island women. Dietary intakes of protein, total energy, saturated and polyunsaturated fat, calcium, phosphorus, zinc, iodine, vitamin A equivalents, and folate differed between the ethnic groups, as well as the number of serves of dairy foods, chicken, and legumes. No strong correlations between dietary nutrients and breast milk components were found.

Keywords: breastfeeding; composition; diet; ethnicity; human milk.

Conflict of interest statement

The authors, C.A.B., D.I.H., T.D.H., G.P. and P.G. declare no conflict of interest. S.G.-J., F.W., and B.S. provided guidance and support to the presentation and writing of the manuscript.

Figures

Figure 1
Figure 1
Study participant recruitment flow chart.
Figure 2
Figure 2
Spearman’s rank-correlations between mother’s dietary intake and breast milk nutrients. PUFAs, Polyunsaturated fatty acids; DPA, Docosapentaenoic acid; MUFA, Monounsaturated fatty acids; FA, fatty acid; DM, dry matter; DHA, Docosahexaenoic acid; SFA, Saturated fatty acids; and EPA, Eicosapentaenoic acid.

References

    1. Lönnerdal B. Breast milk: A truly functional food. Nutrition. 2000;16:509–511. doi: 10.1016/S0899-9007(00)00363-4.
    1. Field C.J. The immunological components of human milk and their effect of immune development in infants. J. Nutr. 2005;135:1–4. doi: 10.1093/jn/135.1.1.
    1. Victora C.G., Bahl R., Barros A.J.D., França G.V.A., Horton S., Krasevec J., Murch S., Sankar M.J., Walker N., Rollins N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–490. doi: 10.1016/S0140-6736(15)01024-7.
    1. Marseglia L., Manti S., D’Angelo G., Cuppari C., Salpietro V., Filippelli M., Trovato A., Gitto E., Salpietro C., Arrigo T. Obesity and breastfeeding: The strength of association. Women Birth. 2015;28:81–86. doi: 10.1016/j.wombi.2014.12.007.
    1. Manti S., Lougaris V., Cuppari C., Tardino L., Dipasquale V., Arrigo T., Salpietro C., Leonardi S. Breastfeeding and IL-10 levels in children affected by cow’s milk protein allergy: A restrospective study. Immunobiology. 2017;222:358–362. doi: 10.1016/j.imbio.2016.09.003.
    1. World Health Organization 10 Facts on Breastfeeding. [(accessed on 22 February 2018)]; Available online:
    1. National Breastfeeding Advisory Committee of New Zealand . National Strategic Plan of Action for Breastfeeding 2008–2012: National Breastfeeding Advisory Committee of New Zealand’s Advice to the Director-General of Health. Ministry of Health; Wellington, The New Zealand: 2009. [(accessed on 20 February 2018)]. Available online: .
    1. Michaelsen K.F., Skafte L., Badsberg J.H., Jorgensen M. Variation in macronutrients in human bank milk: Influencing factors and implications for human-milk banking. J. Pediatr. Gastroenterol. Nutr. 1990;11:229–239. doi: 10.1097/00005176-199008000-00013.
    1. Sauer C.W., Boutin M.A., Kim J.H. Wide Variability in Caloric Density of Expressed Human Milk Can Lead to Major Underestimation or Overestimation of Nutrient Content. J. Hum. Lact. 2017;33:341–350. doi: 10.1177/0890334416672200.
    1. Fujita M., Roth E., Lo Y.-J., Hurst C., Vollner J., Kendell A. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers–Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 2012;149:52–59. doi: 10.1002/ajpa.22092.
    1. Hinde K., German J.B. Food in an evolutionary context: Insights from mother’s milk. J. Sci. Food Agric. 2012;92:2219–2223. doi: 10.1002/jsfa.5720.
    1. Morrow A.L., Ruiz-Palacios G.M., Altaye M., Jiang X., Lourdes Guerrero M., Meinzen-Derr J.K., Farkas T., Chaturvedi P., Pickering L.K., Newburg D.S. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 2004;145:297–303. doi: 10.1016/j.jpeds.2004.04.054.
    1. Prentice A., Prentice A.M., Whitehead R.G. Breast-milk fat concentrations of rural african women: 1. Short-term variations within individuals. Br. J. Nutr. 1981;45:483–494. doi: 10.1079/BJN19810127.
    1. Bravi F., Wiens F., Decarli A., Dal Pont A., Agostoni C., Ferraroni M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016;104:646–662. doi: 10.3945/ajcn.115.120881.
    1. Zachara B.A., Pilecki A. Selenium concentration in the milk of breast-feeding mothers and its geographic distribution. Environ. Health Perspect. 2000;108:1043–1046. doi: 10.1289/ehp.001081043.
    1. Ameur A., Enroth S., Johansson Å., Zaboli G., Igl W., Johansson A.C., Rivas M.A., Daly M.J., Schmitz G., Hicks A.A., et al. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids. Am. J. Hum. Genet. 2012;90:809–820. doi: 10.1016/j.ajhg.2012.03.014.
    1. Yang T., Zhang L.S., Bao W., Rong S. Nutritional composition of breast milk in Chinese women: A systematic review. Asia Pac. J. Clin. Nutr. 2018;27:491–502.
    1. Fu Y.Q., Liu X., Zhou B., Jiang A.C., Chai L.Y. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016;19:2675–2687. doi: 10.1017/S1368980016000707.
    1. Su M.Y., Jia H.X., Chen W.L., Qi X.Y., Liu C.P., Liu Z.M. Macronutrient and micronutrient composition of breast milk from women of different ages and dietary habits in Shanghai area. Int. Dairy J. 2018;85:27–34. doi: 10.1016/j.idairyj.2018.04.015.
    1. Deem H.E. Effect of diet on human milk secretion. Br. Med. J. 1935;1935:80–81. doi: 10.1136/bmj.1.3862.80-a.
    1. Deem H.E. Observations on the milk of New Zealand Women. Arch. Dis. Child. 1931;6:53–70. doi: 10.1136/adc.6.31.53.
    1. Bates M.N., Hannah D.J., Buckland S.J., Taucher J.A., Vanmaanen T. Chlorinated organic contaminants in breast-milk of new-zealand women. Environ. Health Perspect. 1994;102:211–217. doi: 10.1289/ehp.94102s1211.
    1. Brough L., Jin Y., Shukri N.H., Wharemate Z.R., Weber J.L., Coad J. Iodine intake and status during pregnancy and lactation before and after government initiatives to improve iodine status, in Palmerston North, New Zealand: A pilot study. Matern. Child Nutr. 2015;11:646–655. doi: 10.1111/mcn.12055.
    1. Skeaff S.A., Ferguson E.L., McKenzie J.E., Valeix P., Gibson R.S., Thomson C.D. Are breast-fed infants and toddlers in New Zealand at risk of iodine deficiency? Nutrition. 2005;21:325–331. doi: 10.1016/j.nut.2004.07.004.
    1. Mulrine H.M., Skeaff S.A., Ferguson E.L., Gray A.R., Valeix P. Breast-milk iodine concentration declines over the first 6 mo postpartum in iodine-deficient women. Am. J. Clin. Nutr. 2010;92:849–856. doi: 10.3945/ajcn.2010.29630.
    1. Johnson L.A., Ford H.C., Doran J., Richardson V.F. A survey of the iodide concentration of human-milk. N. Z. Med. J. 1990;103:393–394.
    1. Darragh A.J., Moughan P.J. The amino acid composition of human milk corrected for amino acid digestibility. Br. J. Nutr. 1998;80:25–34. doi: 10.1017/S0007114598001731.
    1. Statistics New Zealand . 2013 Census QuickStats about Culture and Identity. Statistics New Zealand; Wellington, New Zealand: 2014.
    1. AOAC International . Official Methods of Analysis of AOAC International. AOAC International; Gaithersburg, MD, USA: 2005.
    1. Food and Agriculture Organization of the United Nations . Food Energy—Methods of Analysis and Conversion Factors. Volume 77 Food and Agriculture Organization of the United Nations; Rome, Italy: 2003. Analytical Methods for Carbohydrates in Foods.
    1. Ministry of Health . Food and Nutrition Guidelines for Healthy Pregnant and Breastfeeding Women: A Background Paper. Ministry of Health; Wellington, New Zealand: 2006.
    1. WHO Global Datebase on Body Mass Index. [(accessed on 8 October 2017)]; Available online: .
    1. Ministry of Health . Annual Update of Key Results 2014/15: New Zealand Health Survey. Ministry of Health; Wellington, New Zealand: 2015.
    1. Ministry of Health . Guidance for Healthy Weight Gain in Pregnancy. Ministry of Health; Wellington, New Zealand: 2014.
    1. Martin J.E., Hure A.J., Macdonald-Wicks L., Smith R., Collins C.E. Predictors of post-partum weight retention in a prospective longitudinal study. Matern. Child Nutr. 2014;10:496–509. doi: 10.1111/j.1740-8709.2012.00437.x.
    1. Nomura K., Kido M., Tanabe A., Nagashima K., Takenoshita S., Ando K. Investigation of optimal weight gain during pregnancy for Japanese Women. Sci Rep. 2017;7:2569. doi: 10.1038/s41598-017-02863-1.
    1. Whitaker K.M., Marino R.C., Haapala J.L., Foster L., Smith K.D., Teague A.M., Jacobs D.R., Fontaine P.L., McGovern P.M., Schoenfuss T.C., et al. Associations of Maternal Weight Status Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity. 2017;25:2092–2099. doi: 10.1002/oby.22025.
    1. Bahadoer S., Gaillard R., Felix J.F., Raat H., Renders C.M., Hofman A., Steegers E.A.P., Jaddoe V.W.V. Ethnic disparities in maternal obesity and weight gain during pregnancy. The Generation R Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015;193:51–60. doi: 10.1016/j.ejogrb.2015.06.031.
    1. Prentice A.N.N. Handbook of Milk Composition. Academic Press; San Diego, CA, USA: 1995. [(accessed on 23 February 2018)]. D—Regional Variations in the Composition of Human Milk A2—Jensen, Robert G. pp. 115–221. Available online:
    1. Ballard O., Morrow A.L. Human Milk Composition Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013;60:49–74. doi: 10.1016/j.pcl.2012.10.002.
    1. Hester S.N., Hustead D.S., Mackey A.D., Singhal A., Marriage B.J. Is the Macronutrient Intake of Formula-Fed Infants Greater Than Breast-Fed Infants in Early Infancy? J. Nutr. Metab. 2012;2012:13. doi: 10.1155/2012/891201.
    1. Wojcik K.Y., Rechtman D.J., Lee M.L., Montoya A., Medo E.T. Macronutrient Analysis of a Nationwide Sample of Donor Breast Milk. J. Am. Diet. Assoc. 2009;109:137–140. doi: 10.1016/j.jada.2008.10.008.
    1. Saarela T., Kokkonen J., Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94:1176–1181. doi: 10.1080/08035250510036499.
    1. Kent J.C., Mitoulas L.R., Cregan M.D., Ramsay D.T., Doherty D.A., Hartmann P.E. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics. 2006;117:E387–E395. doi: 10.1542/peds.2005-1417.
    1. Michaelsen K.F., Larsen P.S., Thomsen B.L., Samuelson G. The Copenhagen cohort study on infant nutrition and growth: Breast-milk intake, human-milk macronutrient content, and influencing factors. Am. J. Clin. Nutr. 1994;59:600–611. doi: 10.1093/ajcn/59.3.600.
    1. Vitolo M.R., Soares L.M.V., Carvalho E.B., Cardoso C.B. Calcium and magnesium concentrations in mature human milk: Influence of calcium intake, age and socioeconomic level. Arch. Latinoam. Nutr. 2004;54:118–122.
    1. Dorea J.G. Calcium and phosphorus in human milk. Nutr. Res. 1999;19:709–739. doi: 10.1016/S0271-5317(99)00035-4.
    1. Feeley R.M., Eitenmiller R.R., Jones J.B., Barnhart H. Copper, iron, and zinc contents of human-milk at early stages of lactation. Am. J. Clin. Nutr. 1983;37:443–448. doi: 10.1093/ajcn/37.3.443.
    1. Fransson G.B., Lonnerdal B. Zinc, copper, calcium, and magnesium in human-milk. J. Pediatr. 1982;101:504–508. doi: 10.1016/S0022-3476(82)80690-2.
    1. Moser P.B., Reynolds R.D. Dietary zinc intake and zinc concentrations of plasma, erythrocytes, and breast-milk in antepartum and postpartum lactating and nonlactating women—A longitudinal-study. Am. J. Clin. Nutr. 1983;38:101–108. doi: 10.1093/ajcn/38.1.101.
    1. Krebs N.F., Hambidge K.M., Jacobs M.A., Rasbach J.O. The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. Am. J. Clin. Nutr. 1985;41:560–570. doi: 10.1093/ajcn/41.3.560.
    1. Karra M.V., Kirksey A., Galal O., Bassily N.S., Harrison G.G., Jerome N.W. Effect of short-term oral zinc supplementation on the concentration of zinc in milk from american and egyptian women. Nutr. Res. 1989;9:471–478. doi: 10.1016/S0271-5317(89)80172-1.
    1. Kumpulainen J. Selenium: Requirement and supplementation. Acta Paediatr. Scand. 1989:114–117. doi: 10.1111/j.1651-2227.1989.tb11221.x.
    1. Smith A.M., Picciano M.F., Milner J.A. Selenium intakes and status of human-milk and formula fed infants. Am. J. Clin. Nutr. 1982;35:521–526. doi: 10.1093/ajcn/35.3.521.
    1. Combs G.F. Selenium in global food systems. Br. J. Nutr. 2001;85:517–547. doi: 10.1079/BJN2000280.
    1. Funk M.A., Hamlin L., Picciano M.F., Prentice A., Milner J.A. Milk selenium of rural african women: Influence of maternal nutrition, parity, and length of lactation. Am. J. Clin. Nutr. 1990;51:220–224. doi: 10.1093/ajcn/51.2.220.
    1. Debski B., Finley D.A., Picciano M.F., Lonnerdal B., Milner J. Selenium content and glutathione-peroxidase activity of milk from vegetarian and nonvegetarian women. J. Nutr. 1989;119:215–220. doi: 10.1093/jn/119.2.215.
    1. Jenness R. Composition of human-milk. Semin. Perinatol. 1979;3:225–239.
    1. Koletzko B., Thiel I., Abiodun P.O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr. 1992;120:S62–S70. doi: 10.1016/S0022-3476(05)81238-7.
    1. Su L.L., Sk T.C., Lim S.L., Chen Y., Tan E.A., Pai N.N., Gong Y.H., Foo J., Rauff M., Chong Y.S. The influence of maternal ethnic group and diet on breast milk fatty acid composition. Ann. Acad. Med. Singap. 2010;39:675–679.
    1. Glew R.H., Wold R.S., Herbein J.H., Wark W.A., Martinez M.A., VanderJagt D.J. Low Docosahexaenoic Acid in the Diet and Milk of Women in New Mexico. J. Am. Diet. Assoc. 2008;108:1693–1699. doi: 10.1016/j.jada.2008.07.006.
    1. Kim H., Kang S., Jung B.-M., Yi H., Jung J.A., Chang N. Breast milk fatty acid composition and fatty acid intake of lactating mothers in South Korea. Br. J. Nutr. 2017;117:556–561. doi: 10.1017/S0007114517000253.
    1. Urwin H.J., Zhang J., Gao Y., Wang C., Li L., Song P., Man Q., Meng L., Frøyland L., Miles E.A., et al. Immune factors and fatty acid composition in human milk from river/lake, coastal and inland regions of China. Br. J. Nutr. 2012;109:1949–1961. doi: 10.1017/S0007114512004084.
    1. Wang L.W., Shimizu Y., Kaneko S., Hanaka S., Abe T., Shimasaki H., Hisaki H., Nakajima H. Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatr. Int. 2000;42:14–20. doi: 10.1046/j.1442-200x.2000.01169.x.
    1. Innis S.M., Kuhnlein H.V. Long-chain n-3 fatty acids in breast milk of Inuit women consuming traditional foods. Early Hum. Dev. 1988;18:185–189. doi: 10.1016/0378-3782(88)90055-2.

Source: PubMed

3
Tilaa