Hemodynamic, functional, and clinical responses to pulmonary artery denervation in patients with pulmonary arterial hypertension of different causes: phase II results from the Pulmonary Artery Denervation-1 study

Shao-Liang Chen, Hang Zhang, Du-Jiang Xie, Juan Zhang, Ling Zhou, Alexander M K Rothman, Gregg W Stone, Shao-Liang Chen, Hang Zhang, Du-Jiang Xie, Juan Zhang, Ling Zhou, Alexander M K Rothman, Gregg W Stone

Abstract

Background: The mechanisms underlying pulmonary arterial hypertension (PAH) are multifactorial. The efficacy of pulmonary artery denervation (PADN) for idiopathic PAH treatment has been evaluated. This study aimed to analyze the hemodynamic, functional, and clinical responses to PADN in patients with PAH of different causes.

Methods and results: Between April 2012 and April 2014, 66 consecutive patients with a resting mean pulmonary arterial pressure ≥25 mm Hg treated with PADN were prospectively followed up. Target drugs were discontinued after the PADN procedure. Hemodynamic response and 6-minute walk distance were repeatedly measured within the 1 year post PADN follow-up. The clinical end point was the occurrence of PAH-related events at the 1-year follow-up. There were no PADN-related complications. Hemodynamic success (defined as the reduction in mean pulmonary arterial pressure by a minimal 10% post PADN) was achieved in 94% of all patients, with a mean absolute reduction in systolic pulmonary arterial pressure and mean pulmonary arterial pressure within 24 hours of -10 mm Hg and -7 mm Hg, respectively. The average increment in 6-minute walk distance after PADN was 94 m. Worse PAH-related events occurred in 10 patients (15%), mostly driven by the worsening of PAH (12%). There were 8 (12%) all-cause deaths, with 6 (9%) PAH-related deaths.

Conclusions: PADN was safe and feasible for the treatment of PAH. The PADN procedure was associated with significant improvements in hemodynamic function, exercise capacity, and cardiac function and with less frequent PAH-related events and death at 1 year after PADN treatment. Further randomized studies are required to confirm the efficacy of PADN for PAH.

Clinical trial registration: URL: http://www.chictr.trc.com.cn. Unique identifier: chiCTR-ONC-12002085.

Keywords: arterial pressure; denervation; familial primary pulmonary hypertension; hemodynamics; pulmonary artery.

© 2015 The Authors.

Figures

Figure 1.
Figure 1.
Pulmonary arterial angiography, position of electrodes, and pulmonary artery denervation (PADN) procedure. (I) Anterior-posterior and cranial (200) view of the pulmonary arterial angiograph. (II) The red line represents the lateral wall of the main pulmonary artery (MPA), the blue line represents the anterior wall of the left pulmonary artery (LPA), and the point where the 2 lines intersect is point A; the intersection of the yellow (posterior wall of the LPA) and red lines is point B, which is 1 to 2 mm posterior to point A; the green line starts from the inferior wall of the right pulmonary artery (RPA) and ends at point A, and point C localizes at this level and 1 to 2 mm anterior to point A. (III) A pulmonary artery denervation catheter with 10 electrodes is positioned at the distal MPA, with electrodes A, B, and C at points A, B, and C, respectively.
Figure 2.
Figure 2.
Dynamic changes in mean pulmonary arterial pressure (A), pulmonary vessel resistance (B), 6-minute walk distance (C), and N-terminal pro–brain natriuretic peptide (NT pro-BNP; D, after transferred to log data) levels. All variables improved significantly at the 6-month follow-up, without any additional significant change between the 6-month and the 1-year follow-up.
Figure 3.
Figure 3.
Kaplan–Meier survival analysis. The 1-year Kaplan–Meier–estimated rate of pulmonary arterial hypertension (PAH)–related events was 15.2%. PADN indicates pulmonary artery denervation.

References

    1. Anderson JR, Nawarskas JJ. Pharmacotherapeutic management of pulmonary arterial hypertension. Cardiol Rev. 2010;18:148–162. doi: 10.1097/CRD.0b013e3181d4e921.
    1. Galiè N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML, Branzi A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J. 2009;30:394–403. doi: 10.1093/eurheartj/ehp022.
    1. Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, Shapiro S, White RJ, Chan M, Beardsworth A, Frumkin L, Barst RJ Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119:2894–2903. doi: 10.1161/CIRCULATIONAHA.108.839274.
    1. McLaughlin VV, Badesch DB, Delcroix M, Fleming TR, Gaine SP, Galiè N, Gibbs JS, Kim NH, Oudiz RJ, Peacock A, Provencher S, Sitbon O, Tapson VF, Seeger W. End points and clinical trial design in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 suppl):S97–107. doi: 10.1016/j.jacc.2009.04.007.
    1. Simonneau G, Rubin LJ, Galiè N, Barst RJ, Fleming TR, Frost AE, Engel PJ, Kramer MR, Burgess G, Collings L, Cossons N, Sitbon O, Badesch DB PACES Study Group. Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: a randomized trial. Ann Intern Med. 2008;149:521–530.
    1. Barst RJ, Oudiz RJ, Beardsworth A, Brundage BH, Simonneau G, Ghofrani HA, Sundin DP, Galiè N Pulmonary Arterial Hypertension and Response to Tadalafil (PHIRST) Study Group. Tadalafil monotherapy and as add-on to background bosentan in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2011;30:632–643. doi: 10.1016/j.healun.2010.11.009.
    1. Chen SL, Zhang FF, Xu J, Xie DJ, Zhou L, Nguyen T, Stone GW. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J Am Coll Cardiol. 2013;62:1092–1100. doi: 10.1016/j.jacc.2013.05.075.
    1. Juratsch CE, Jengo JA, Castagna J, Laks MM. Experimental pulmonary hypertension produced by surgical and chemical denervation of the pulmonary vasculature. Chest. 1980;77:525–530.
    1. Chen SL, Zhang YJ, Zhou L, Xie DJ, Zhang FF, Jia HB, Wong SS, Kwan TW. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. EuroIntervention. 2013;9:269–276. doi: 10.4244/EIJV9I2A43.
    1. Tonelli AR, Mubarak KK, Li N, Carrie R, Alnuaimat H. Effect of balloon inflation volume on pulmonary artery occlusion pressure in patients with and without pulmonary hypertension. Chest. 2011;139:115–121. doi: 10.1378/chest.10-0981.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.
    1. Tei C, Nishimura RA, Seward JB, Tajik AJ. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements. J Am Soc Echocardiogr. 1997;10:169–178.
    1. Breda AP, Pereira de Albuquerque AL, Jardim C, Morinaga LK, Suesada MM, Fernandes CJ, Dias B, Lourenço RB, Salge JM, Souza R. Skeletal muscle abnormalities in pulmonary arterial hypertension. PLoS One. 2014;9:e114101. doi: 10.1371/journal.pone.0114101.
    1. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–1312. doi: 10.1161/01.CIR.0000140724.90898.D3.
    1. Grigioni F, Potena L, Galiè N, Fallani F, Bigliardi M, Coccolo F, Magnani G, Manes A, Barbieri A, Fucili A, Magelli C, Branzi A. Prognostic implications of serial assessments of pulmonary hypertension in severe chronic heart failure. J Heart Lung Transplant. 2006;25:1241–1246. doi: 10.1016/j.healun.2006.06.015.
    1. Hernandez AF, Hammill BG, O’Connor CM, Schulman KA, Curtis LH, Fonarow GC. Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) Registry. J Am Coll Cardiol. 2009;53:184–192. doi: 10.1016/j.jacc.2008.09.031.
    1. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016. doi: 10.1161/CIRCULATIONAHA.109.192064.
    1. Galiè N, Simonneau G, Barst RJ, Badesch D, Rubin L. Clinical worsening in trials of pulmonary arterial hypertension: results and implications. Curr Opin Pulm Med. 2010;16(suppl 1):S11–S19. doi: 10.1097/01.mcp.0000370206.61003.7e.
    1. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–1401.
    1. Rothman A, Arnold N, Chang W, Suvarna S, Elliot C, Condliffe R, Kiely D, Gunn J, Lawire A. Pulmonary artery denervation reduced pulmonary artery pressure and induces histological changes in an acute porcine model of pulmonary hypertension. Circulation Cardiovasc Interv. 2015;8:e002569.
    1. Pulido T, Adzerikho I, Channick RN, Delcroix M, Galiè N, Ghofrani HA, Jansa P, Jing ZC, Le Brun FO, Mehta S, Mittelholzer CM, Perchenet L, Sastry BK, Sitbon O, Souza R, Torbicki A, Zeng X, Rubin LJ, Simonneau G SERAPHIN Investigators. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369:809–818. doi: 10.1056/NEJMoa1213917.
    1. Verity MA, Bevan JA. Fine structural study of the terminal effecror plexus, neuromuscular and intermuscular relationships in the pulmonary artery. J Anat. 1968;103(pt 1):49–63.
    1. Richardson JB. Nerve supply to the lungs. Am Rev Respir Dis. 1979;119:785–802.
    1. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost A, Barst RJ, Badesch DB, Elliott CG, Liou TG, McGoon MD. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122:164–172. doi: 10.1161/CIRCULATIONAHA.109.898122.
    1. Le Tourneau T, Richardson M, Juthier F, Modine T, Fayad G, Polge AS, Ennezat PV, Bauters C, Vincentelli A, Deklunder G. Echocardiography predictors and prognostic value of pulmonary artery systolic pressure in chronic organic mitral regurgitation. Heart. 2010;96:1311–1317. doi: 10.1136/hrt.2009.186486.
    1. Hinderliter AL, Willis PW, IV, Long W, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Biosblanc B, Koch G, Li S, Clayton LM, Jöbsis MM, Crow JW. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84:481–484.
    1. Hildenbrand FF, Fauchère I, Huber LC, Keusch S, Speich R, Ulrich S. A low resting heart rate at diagnosis predicts favourable long-term outcome in pulmonary arterial and chronic thromboembolic pulmonary hypertension. A prospective observational study. Respir Res. 2012;13:76. doi: 10.1186/1465-9921-13-76.

Source: PubMed

3
Tilaa