Single low-dose rHuIL-12 safely triggers multilineage hematopoietic and immune-mediated effects

Mamata S Gokhale, Vladimir Vainstein, Jamie Tom, Simmy Thomas, Chris E Lawrence, Zoya Gluzman-Poltorak, Nicholas Siebers, Lena A Basile, Mamata S Gokhale, Vladimir Vainstein, Jamie Tom, Simmy Thomas, Chris E Lawrence, Zoya Gluzman-Poltorak, Nicholas Siebers, Lena A Basile

Abstract

Background: Recombinant human interleukin 12 (rHuIL-12) regulates hematopoiesis and cell-mediated immunity. Based on these hematopoietic and immunomodulatory activities, a recombinant human IL-12 (rHuIL-12) is now under development to address the unmet need for a medical countermeasure against the hematopoietic syndrome of the acute radiation syndrome (HSARS) that occurs in individuals exposed to lethal radiation, and also to serve as adjuvant therapy that could provide dual hematopoietic and immunotherapeutic benefits in patients with cancer receiving chemotherapy. We sought to demonstrate in healthy subjects the safety of rHuIL-12 at single, low doses that are appropriate for use as a medical countermeasure for humans exposed to lethal radiation and as an immunomodulatory anti-cancer agent.

Methods: Two placebo-controlled, double-blinded studies assessed the safety, tolerability, pharmacokinetics and pharmacodynamics of rHuIL-12. The first-in-human (FIH) dose-escalation study randomized subjects to single subcutaneous injections of placebo or rHuIL-12 at 2, 5, 10, and 20 μg doses. Due to toxicity, dose was reduced to 15 μg and then to 12 μg. The phase 1b expansion study randomized subjects to the highest safe and well tolerated dose of 12 μg.

Results: Thirty-two subjects were enrolled in the FIH study: 4 active and 2 placebo at rHuIL-12 doses of 2, 5, 10, 12, and 15 μg; 1 active and 1 placebo at 20 μg. Sixty subjects were enrolled in the expansion study: 48 active and 12 placebo at 12 μg dose of rHuIL-12. In both studies, the most common adverse events (AEs) related to rHuIL-12 were headache, dizziness, and chills. No immunogenicity was observed. Elimination of rHuIL-12 was biphasic, suggesting significant distribution into extravascular spaces. rHuIL-12 triggered transient changes in neutrophils, platelets, reticulocytes, lymphocytes, natural killer cells, and CD34+ hematopoietic progenitor cells, and induced increases in interferon-γ and C-X-C motif chemokine 10.

Conclusion: A single low dose of rHuIl-12 administered subcutaneously can elicit hematological and immune-mediated effects without undue toxicity. The safety and the potent multilineage hematopoietic/immunologic effects triggered by low-dose rHuIL-12 support the development of rHuIL-12 both as a radiation medical countermeasure and as adjuvant immunotherapy for cancer.

Trial registration: ClinicalTrials.gov: NCT01742221.

Figures

Figure 1
Figure 1
Plasma concentration profiles of rHuIL-12 over time. A) Plasma concentration vs. time for rHuIL-12 at 2, 5, 10, 12, 15 and 20 μg doses in the FIH study. B) Plasma concentration vs. time for rHuIL-12 (12 μg) and for IFN-γ and CXCL10 in subjects treated with rHuIL-12 at 12 μg in the phase 1b expansion study.
Figure 2
Figure 2
Transient hematological changes with different rHuIL-12 doses and placebo in the FIH study. The percentage changes from baseline count after treatment with rHuIL-12 (2, 5, 10, 12, 15, or 20 μg) or placebo are shown as follows: A) lymphocytes/rHuIL-12; B) lymphocytes/placebo; C) neutrophils/rHuIL-12; D) neutrophils/placebo; E) platelets/rHuIL-12; F) platelets/placebo; G) reticulocytes/rHuIL-12; H) reticulocytes/placebo.
Figure 3
Figure 3
Transient hematological changes with 12μg dose of rHuIL-12 or placebo in phase 1b expansion study. Standard hematologic methods were used to determine cell counts at the indicated time points. The mean percentage of baseline count after treatment with rHuIL-12 (12 μg) or placebo are shown as follows: A) lymphocytes, neutrophils, platelets, and reticulocytes after treatment with rHuIL-12; B) lymphocytes, neutrophils, platelets, and reticulocytes after treatment with placebo; C) CD45+, CD3+, CD4+ and CD8+ cells after rHuIL-12; D) CD45+, CD3+, CD4+ and CD8+ cells after rHuIL-12; D) NK and CD34+ after placebo; E) NK and CD34+ cells after rHuIL-12; F) NK and CD34+ cells after placebo. NK cells were defined as CD45 + CD16 + CD56+ triple positive lymphocytes.
Figure 4
Figure 4
Effect of rHuIL-12 or Placebo on rHuIL-12Rβ2 Positivity and CD56 Mean Fluorescence Intensity in the Phase 1b Expansion Study. Flow cytometry was used to determine A) changes in the percentage of rHuIL-12Rβ2 positive NK and CD34+ cells in response to rHuIL-12 (12 μg) or placebo; and B) changes in CD56 mean fluorescence intensity on NK cells in response to dose of rHuIL-12 (12 μg) or placebo. NK cells were defined as CD45 + CD16 + CD56+ triple positive lymphocytes.
Figure 5
Figure 5
Effect of rHuIL-12 or Placebo on EPO, IL-18 and CXCL10 levels in the Phase 1b expansion study. EPO, IL-18, and CXCL10 were measured at the indicated time points using validated assays. The mean changes from baseline after treatment with rHuIL-12 (12 μg) or placebo are shown as follows: A) EPO; B) IL-18; C) CXCL10.
Figure 6
Figure 6
Gating strategy for flow cytometry in Phase 1 b expansion study.

References

    1. Bellone G, Trinchieri G. Dual stimulatory and inhibitory effect of NK cell stimulatory factor/IL-12 on human hematopoiesis. J Immunol. 1994;153:930–937.
    1. Hirayama F, Katayama N, Neben S, Donaldson D, Nickbarg EB, Clark SC, Ogawa M. Synergistic interaction between interleukin-12 and steel factor in support of proliferation of murine lymphohematopoietic progenitors in culture. Blood. 1994;83:92–98.
    1. Jacobsen SE, Veiby OP, Smeland EB. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J Exp Med. 1993;178:413–418. doi: 10.1084/jem.178.2.413.
    1. Ploemacher RE, van Soest PL, Boudewijn A, Neben S. Interleukin-12 enhances interleukin-3 dependent multilineage hematopoietic colony formation stimulated by interleukin-11 or steel factor. Leukemia. 1993;7:1374–1380.
    1. Ploemacher RE, van Soest PL, Voorwinden H, Boudewijn A. Interleukin-12 synergizes with interleukin-3 and steel factor to enhance recovery of murine hemopoietic stem cells in liquid culture. Leukemia. 1993;7:1381–1388.
    1. Basile LA, Ellefson D, Gluzman-Poltorak Z, Junes-Gill K, Mar V, Mendonca S, Miller JD, Tom J, Trinh A, Gallaher TK. HemaMax, a Recombinant Human Interleukin-12. Is a potent mitigator of acute radiation injury in mice and non-human primates. PLoS One. 2012;7:e30434. doi: 10.1371/journal.pone.0030434.
    1. Dybedal I, Larsen S, Jacobsen SE. IL-12 directly enhances in vitro murine erythropoiesis in combination with IL-4 and stem cell factor. J Immunol. 1995;154:4950–4955.
    1. Brunda MJ. Interleukin-12. J Leukoc Biol. 1994;55:280–288.
    1. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–845. doi: 10.1084/jem.170.3.827.
    1. Trudeau C, Cotreau MM, Stonis L, Dykstra KH, Oestreicher JL, Strahs A, Dorner AJ, Van Cleave VH, Trepicchio WL, Schwertschlag US. A single administration of recombinant human interleukin-12 is associated with increased expression levels of interferon-gamma and signal transducer and activator of transcription in healthy subjects. J Clin Pharmacol. 2005;45:649–658. doi: 10.1177/0091270005276116.
    1. Wolf SF, Sieburth D, Sypek J. Interleukin 12: a key modulator of immune function. Stem Cells. 1994;12:154–168. doi: 10.1002/stem.5530120203.
    1. Wolf SF, Temple PA, Kobayashi M, Young D, Dicig M, Lowe L, Dzialo R, Fitz L, Ferenz C, Hewick RM. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol. 1991;146:3074–3081.
    1. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med. 1993;178:1223–1230. doi: 10.1084/jem.178.4.1223.
    1. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Storkus WJ. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol. 1994;153:1697–1706.
    1. Bi Z, Quandt P, Komatsu T, Barna M, Reiss CS. IL-12 promotes enhanced recovery from vesicular stomatitis virus infection of the central nervous system. J Immunol. 1995;155:5684–5689.
    1. Cavanaugh VJ, Guidotti LG, Chisari FV. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol. 1997;71:3236–3243.
    1. Schwarze J, Hamelmann E, Cieslewicz G, Tomkinson A, Joetham A, Bradley K, Gelfand EW. Local treatment with IL-12 is an effective inhibitor of airway hyperresponsiveness and lung eosinophilia after airway challenge in sensitized mice. J Allergy Clin Immunol. 1998;102:86–93. doi: 10.1016/S0091-6749(98)70058-2.
    1. Altare F, Lammas D, Revy P, Jouanguy E, Doffinger R, Lamhamedi S, Drysdale P, Scheel-Toellner D, Girdlestone J, Darbyshire P, Wadhwa M, Dockrell H, Salmon M, Fischer A, Durandy A, Casanova JL, Kumararatne DS. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest. 1998;102:2035–2040. doi: 10.1172/JCI4950.
    1. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998;280:1435–1438. doi: 10.1126/science.280.5368.1435.
    1. Goebel A, Kavanagh E, Lyons A, Saporoschetz IB, Soberg C, Lederer JA, Mannick JA, Rodrick ML. Injury induces deficient interleukin-12 production, but interleukin-12 therapy after injury restores resistance to infection. Ann Surg. 2000;231:253–261. doi: 10.1097/00000658-200002000-00015.
    1. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13:155–168. doi: 10.1016/S1359-6101(01)00032-6.
    1. Little RF, Pluda JM, Wyvill KM, Rodriguez-Chavez IR, Tosato G, Catanzaro AT, Steinberg SM, Yarchoan R. Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood. 2006;107:4650–4657. doi: 10.1182/blood-2005-11-4455.
    1. Rook AH, Wood GS, Yoo EK, Elenitsas R, Kao DM, Sherman ML, Witmer WK, Rockwell KA, Shane RB, Lessin SR, Vonderheid EC. Interleukin-12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood. 1999;94:902–908.
    1. Younes A, Pro B, Robertson MJ, Flinn IW, Romaguera JE, Hagemeister F, Dang NH, Fiumara P, Loyer EM, Cabanillas FF, McLaughlin PW, Rodriguez MA, Samaniego F. Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin Cancer Res. 2004;10:5432–5438. doi: 10.1158/1078-0432.CCR-04-0540.
    1. Gollob JA, Mier JW, Veenstra K, McDermott DF, Clancy D, Clancy M, Atkins MB. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res. 2000;6:1678–1692.
    1. Gollob JA, Veenstra KG, Parker RA, Mier JW, McDermott DF, Clancy D, Tutin L, Koon H, Atkins MB. Phase I trial of concurrent twice-weekly recombinant human interleukin-12 plus low-dose IL-2 in patients with melanoma or renal cell carcinoma. J Clin Oncol. 2003;21:2564–2573. doi: 10.1200/JCO.2003.12.119.
    1. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y. IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol. 2007;35:203–213. doi: 10.1016/j.exphem.2006.10.002.
    1. Guidance for Industry: Animal Models — Essential Elements to Address Efficacy Under the Animal Rule. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); 2009.
    1. Motzer RJ, Rakhit A, Schwartz LH, Olencki T, Malone TM, Sandstrom K, Nadeau R, Parmar H, Bukowski R. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res. 1998;4:1183–1191.
    1. Ohno R, Yamaguchi Y, Toge T, Kinouchi T, Kotake T, Shibata M, Kiyohara Y, Ikeda S, Fukui I, Gohchi A, Sugiyama Y, Saji S, Hazama S, Oka M, Ohnishi Y, Ohhashi Y, Tsukagoshi S, Taguchi T. A dose-escalation and pharmacokinetic study of subcutaneously administered recombinant human interleukin 12 and its biological effects in Japanese patients with advanced malignancies. Clin Cancer Res. 2000;6:2661–2669.
    1. Guidance for Industry: Toxicity Grading Scale for Healthy Adult and Adolescent Volunteers Enrolled in Preventive Vaccine Clinical Trials. A Notice by the Food and Drug Administration; 2007.
    1. Portielje JE, Kruit WH, Schuler M, Beck J, Lamers CH, Stoter G, Huber C, de Boer-Dennert M, Rakhit A, Bolhuis RL, Aulitzky WE. Phase I study of subcutaneously administered recombinant human interleukin 12 in patients with advanced renal cell cancer. Clin Cancer Res. 1999;5:3983–3989.
    1. Portielje JE, Lamers CH, Kruit WH, Sparreboom A, Bolhuis RL, Stoter G, Huber C, Gratama JW. Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-gamma, tumor necrosis factor-alpha, IL-6, and IL-8 responses. Clin Cancer Res. 2003;9:76–83.
    1. Rakhit A, Yeon MM, Ferrante J, Fettner S, Nadeau R, Motzer R, Bukowski R, Carvajal DM, Wilkinson VL, Presky DH, Magram J, Gately MK. Down-regulation of the pharmacokinetic-pharmacodynamic response to interleukin-12 during long-term administration to patients with renal cell carcinoma and evaluation of the mechanism of this “adaptive response” in mice. Clin Pharmacol Ther. 1999;65:615–629. doi: 10.1016/S0009-9236(99)90083-8.
    1. Robertson MJ, Pelloso D, Abonour R, Hromas RA, Nelson RP Jr, Wood L, Cornetta K. Interleukin 12 immunotherapy after autologous stem cell transplantation for hematological malignancies. Clin Cancer Res. 2002;8:3383–3393.
    1. Sosman JA, Verma A, Moss S, Sorokin P, Blend M, Bradlow B, Chachlani N, Cutler D, Sabo R, Nelson M, Bruno E, Gustin D, Viana M, Hoffman R. Interleukin 10-induced thrombocytopenia in normal healthy adult volunteers: evidence for decreased platelet production. Br J Haematol. 2000;111:104–111. doi: 10.1046/j.1365-2141.2000.02314.x.
    1. Hamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci. 2010;11:789–806. doi: 10.3390/ijms11030789.
    1. Allavena P, Paganin C, Zhou D, Bianchi G, Sozzani S, Mantovani A. Interleukin-12 is chemotactic for natural killer cells and stimulates their interaction with vascular endothelium. Blood. 1994;84:2261–2268.
    1. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood. 2003;101:3052–3057. doi: 10.1182/blood-2002-09-2876.
    1. Maltby S, Wohlfarth C, Gold M, Zbytnuik L, Hughes MR, McNagny KM. CD34 is required for infiltration of eosinophils into the colon and pathology associated with DSS-induced ulcerative colitis. Am J Pathol. 2010;177:1244–1254. doi: 10.2353/ajpath.2010.100191.
    1. Suzawa K, Kobayashi M, Sakai Y, Hoshino H, Watanabe M, Harada O, Ohtani H, Fukuda M, Nakayama J. Preferential induction of peripheral lymph node addressin on high endothelial venule-like vessels in the active phase of ulcerative colitis. Am J Gastroenterol. 2007;102:1499–1509. doi: 10.1111/j.1572-0241.2007.01189.x.
    1. Gately MK, Warrier RR, Honasoge S, Carvajal DM, Faherty DA, Connaughton SE, Anderson TD, Sarmiento U, Hubbard BR, Murphy M. Administration of recombinant IL-12 to normal mice enhances cytolytic lymphocyte activity and induces production of IFN-gamma in vivo. Int Immunol. 1994;6:157–167. doi: 10.1093/intimm/6.1.157.
    1. Jackson JD, Yan Y, Brunda MJ, Kelsey LS, Talmadge JE. Interleukin-12 enhances peripheral hematopoiesis in vivo. Blood. 1995;85:2371–2376.
    1. Mortarini R, Borri A, Tragni G, Bersani I, Vegetti C, Bajetta E, Pilotti S, Cerundolo V, Anichini A. Peripheral burst of tumor-specific cytotoxic T lymphocytes and infiltration of metastatic lesions by memory CD8+ T cells in melanoma patients receiving interleukin 12. Cancer Res. 2000;60:3559–3568.
    1. Dinarello CA, Fantuzzi G. Interleukin-18 and host defense against infection. J Infect Dis. 2003;187(Suppl 2):S370–S384.
    1. Gracie JA, Robertson SE, McInnes IB. Interleukin-18. J Leukoc Biol. 2003;73:213–224.
    1. Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, Kessimian N, Noguchi CT. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A. 1994;91:3974–3978. doi: 10.1073/pnas.91.9.3974.
    1. Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6:484–494. doi: 10.1038/nrn1687.
    1. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Corica F, Frisina N. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol. 2003;62:228–236.
    1. Fraser JK, Tan AS, Lin FK, Berridge MV. Expression of specific high-affinity binding sites for erythropoietin on rat and mouse megakaryocytes. Exp Hematol. 1989;17:10–16.
    1. Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res. 2002;64:326–333. doi: 10.1006/mvre.2002.2426.
    1. Sela S, Shurtz-Swirski R, Sharon R, Manaster J, Chezar J, Shkolnik G, Shapiro G, Shasha SM, Merchav S, Kristal B. The polymorphonuclear leukocyte–a new target for erythropoietin. Nephron. 2001;88:205–210. doi: 10.1159/000045991.
    1. Cao Z, Baguley BC, Ching LM. Interferon-inducible protein 10 induction and inhibition of angiogenesis in vivo by the antitumor agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) Cancer Res. 2001;61:1517–1521.
    1. Lotze MT. Interleukin 12: cellular and molecular immunology of an important regulatory cytokine. Introduction. Ann N Y Acad Sci. 1996;795:xiii–xix. doi: 10.1111/j.1749-6632.1996.tb52649.x.
    1. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res. 1997;3:409–417.
    1. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13:4677–4685. doi: 10.1158/1078-0432.CCR-07-0776.
    1. Krieg AM, Efler SM, Wittpoth M, Al Adhami MJ, Davis HL. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother. 2004;27:460–471. doi: 10.1097/00002371-200411000-00006.
    1. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL. Signaling and transcription in T helper development. Annu Rev Immunol. 2000;18:451–494. doi: 10.1146/annurev.immunol.18.1.451.
    1. Pertl U, Luster AD, Varki NM, Homann D, Gaedicke G, Reisfeld RA, Lode HN. IFN-gamma-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J Immunol. 2001;166:6944–6951.
    1. Vicari AP, Schmalbach T, Lekstrom-Himes J, Morris ML, Al-Adhami MJ, Laframboise C, Leese P, Krieg AM, Efler SM, Davis HL. Safety, pharmacokinetics and immune effects in normal volunteers of CPG 10101 (ACTILON), an investigational synthetic toll-like receptor 9 agonist. Antivir Ther. 2007;12:741–751.
    1. Zou JP, Yamamoto N, Fujii T, Takenaka H, Kobayashi M, Herrmann SH, Wolf SF, Fujiwara H, Hamaoka T. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol. 1995;7:1135–1145. doi: 10.1093/intimm/7.7.1135.
    1. Coma G, Pena R, Blanco J, Rosell A, Borras FE, Este JA, Clotet B, Ruiz L, Parkhouse RM, Bofill M. Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and the production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clin Exp Immunol. 2006;145:535–544. doi: 10.1111/j.1365-2249.2006.03145.x.
    1. Lee TV, Kim DK, Peoples GE, Castilleja A, Murray JL, Gershenson DM, Ioannides CG. Secretion of CXC chemokine IP-10 by peripheral blood mononuclear cells from healthy donors and breast cancer patients stimulated with HER-2 peptides. J Interferon Cytokine Res. 2000;20:391–401. doi: 10.1089/107999000312333.
    1. Gluzman-Poltorak Z, Mendonca SR, Vainstein V, Kha H, Basile LA. Randomized comparison of single dose of recombinant human IL-12 versus placebo for restoration of hematopoiesis and improved survival in rhesus monkeys exposed to lethal radiation. J Hematol Oncol. 2014;7:31. doi: 10.1186/1756-8722-7-31. doi:10.1186/1756-8722-7-31.
    1. Basile LA, Gallaher TK, Shibata D, Miller JD, Douer D. Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice. J Transl Med. 2008;6:26. doi: 10.1186/1479-5876-6-26.

Source: PubMed

3
Tilaa