First-in-human study of ONO-4578, an antagonist of prostaglandin E2 receptor 4, alone and with nivolumab in solid tumors

Satoru Iwasa, Takafumi Koyama, Makoto Nishino, Shunsuke Kondo, Kazuki Sudo, Kan Yonemori, Tatsuya Yoshida, Kenji Tamura, Toshio Shimizu, Yutaka Fujiwara, Shigehisa Kitano, Akihiko Shimomura, Jun Sato, Fumiharu Yokoyama, Hiroyuki Iida, Maki Kondo, Noboru Yamamoto, Satoru Iwasa, Takafumi Koyama, Makoto Nishino, Shunsuke Kondo, Kazuki Sudo, Kan Yonemori, Tatsuya Yoshida, Kenji Tamura, Toshio Shimizu, Yutaka Fujiwara, Shigehisa Kitano, Akihiko Shimomura, Jun Sato, Fumiharu Yokoyama, Hiroyuki Iida, Maki Kondo, Noboru Yamamoto

Abstract

EP4, a prostaglandin E2 receptor, has shown an immunosuppressive activity on cancer cells. This first-in-human study evaluated ONO-4578, a highly selective EP4 antagonist, as monotherapy and in combination with nivolumab in patients with advanced or metastatic solid tumors. A daily dose ranging from 30 mg to 100 mg of ONO-4578 monotherapy and that ranging from 2 mg to 60 mg of ONO-4578 with biweekly nivolumab 240 mg were administered. A total of 31 patients were enrolled, 10 receiving monotherapy and 21 receiving combination therapy. Overall, 26 patients experienced treatment-related adverse events. Dose-limiting toxicities were observed in three patients; one of six patients receiving 100 mg monotherapy developed grade 3 duodenal ulcer and two of six patients receiving 60 mg combination therapy developed either grade 3 erythema multiforme or grade 3 increased amylase and grade 4 increased lipase. One patient with small-cell lung cancer who received 40 mg combination therapy had a partial response, and three patients with monotherapy and six patients with combination therapy had stable disease. Pharmacodynamics analyses showed that ONO-4578 had EP4 antagonistic activity at doses as low as 2 mg. In conclusion, the maximum tolerated dose of ONO-4578 alone or in combination with nivolumab was not reached. ONO-4578 was well tolerated at the tested doses and showed signs of antitumor activity. Considering safety, efficacy, and pharmacokinetics/pharmacodynamics results, ONO-4578 40 mg daily with nivolumab 240 mg biweekly was selected as the recommended dose for future clinical trials. (Registration: JapicCTI-173,496 and NCT03155061).

Keywords: maximum tolerated dose; nivolumab; phase I; prostaglandin E2 receptor EP4; solid tumor.

© 2022 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Figures

FIGURE 1
FIGURE 1
(A) Swimmer plot showing the duration of treatment with ONO‐4578 alone or in combination with patients with solid tumors treated with nivolumab in patients with solid tumors. (B) In a patient with small‐cell lung cancer, computed tomography highlighted metastatic tumors at the right hilar lymph node and the left adrenal gland before and 11.7 months after treatment with 40 mg combination therapy. PD, progressive disease; PR, partial response
FIGURE 2
FIGURE 2
Plasma concentration of ONO‐4578 at day 28 of cycle 1 in patients with solid tumors treated with ONO‐4578 monotherapy or in combination with nivolumab. Mean value of each patient's data is shown. Error bars represent standard deviation. In the 60 and 100 mg monotherapy cohorts and the 5 and 60 mg combination therapy cohorts, some patients' data were missing
FIGURE 3
FIGURE 3
Pharmacodynamic parameters in patients with solid tumors treated with ONO‐4578 monotherapy or in combination with nivolumab. (A) Tumor necrosis factor‐α (TNF‐α) release in whole blood samples collected on days 1, 2, and 28 were divided by baseline. Change in the median fold is shown. Error bars represent minimum and maximum values. (B, C) Plasma prostaglandin E2 metabolites (PGEM) (B) and tetranor‐PGEM in urine (C) of individual patients are shown. Data were missing in some patients due to discontinuation of study treatment before the completion of the 28‐day cycle or technical difficulties in the analysis

References

    1. Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti–PD‐1) in melanoma. N Engl J Med. 2013;369(2):134‐144. doi:10.1056/NEJMoa1305133
    1. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous‐cell non‐small‐cell lung cancer. N Engl J Med. 2015;373(2):123‐135. doi:10.1056/NEJMoa1504627
    1. Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non‐small‐cell lung cancer. N Engl J Med. 2015;372(21):2018‐2028. doi:10.1056/NEJMoa1501824
    1. Kang Y‐K, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro‐oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO‐4538‐12, ATTRACTION‐2): a randomised, double‐blind, placebo‐controlled, phase 3 trial. Lancet. 2017;390:2461‐2471. doi:10.1016/S0140-6736(17)31827-5
    1. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320‐330. doi:10.1056/NEJMoa1412082
    1. Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184(21):5309‐5337. doi:10.1016/j.cell.2021.09.020
    1. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal‐cell carcinoma. N Engl J Med. 2015;373(19):1803‐1813. doi:10.1056/NEJMoa1510665
    1. Moskovitz J, Moy J, Ferris RL. Immunotherapy for head and neck squamous cell carcinoma. Curr Oncol Rep. 2018;20:22. doi:10.1007/s11912-018-0654-5
    1. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561‐584. doi:10.1038/nrd4591
    1. Lin CR, Amaya F, Barrett L, et al. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J Pharmacol Exp Ther. 2006;319(3):1096‐1103. doi:10.1124/jpet.106.105569
    1. McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest. 2002;110(5):651‐658. doi:10.1172/JCI15528
    1. Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev. 2013;65:1010‐1052. doi:10.1124/pr.112.007195
    1. Konya V, Marsche G, Schuligoi R, Heinemann A. E‐type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther. 2013;138:485‐502. doi:10.1016/j.pharmthera.2013.03.006
    1. Obermajer N, Kalinski P. Generation of myeloid‐derived suppressor cells using prostaglandin E2 . Transplant Res. 2012;1:15. doi:10.1186/2047-1440-1-15
    1. Ylöstalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are self‐activated to produce prostaglandin E2 (PGE2) that directs stimulated macrophages into an anti‐inflammatory phenotype. Stem Cells. 2012;30:2283‐2296. doi:10.1002/stem.1191
    1. Okano M, Sugata Y, Fujiwara T, et al. E prostanoid 2 (EP2)/EP4‐mediated suppression of antigen‐specific human T‐cell responses by prostaglandin E2 . Immunology. 2006;118:343‐352. doi:10.1111/j.1365-2567.2006.02376.x
    1. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228‐247. doi:10.1016/j.ejca.2008.10.026
    1. Takeuchi K, Amagase K. Roles of cyclooxygenase, prostaglandin E2 and EP receptors in mucosal protection and ulcer healing in the gastrointestinal tract. Curr Pharm Des. 2018;24(18):2002‐2011. doi:10.2174/1381612824666180629111227
    1. Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmöller J. Relevance of UDP‐glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol Ther. 2014;141:92‐116. doi:10.1016/j.ejca.2008.10.026
    1. National Cancer Institute . Common Terminology Criteria for Adverse Events (CTCAE). Accessed May 9, 2022.
    1. Kunkel SL, Spengler M, May MA, Spengler R, Larrick J, Remick D. Prostaglandin E2 regulates macrophage‐derived tumor necrosis factor gene expression. J Biol Chem. 1988;263(11):5380‐5384. doi:10.1016/S0021-9258(18)60727-6
    1. Strassmann G, Patil‐Koota V, Finkelman F, Fong M, Kambayashi T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2 . J Exp Med. 1994;180(6):2365‐2370. doi:10.1084/jem.180.6.2365
    1. Yamane H, Sugimoto Y, Tanaka S, Ichikawa A. Prostaglandin E2 receptors, EP2 and EP4, differentially modulate TNF‐α and IL‐6 production induced by lipopolysaccharide in mouse peritoneal neutrophils. Biochem Biophys Res Commun. 2000;278:224‐228. doi:10.1006/bbrc.2000.3779
    1. Jin Y, Smith C, Hu L, et al. LY3127760, a selective prostaglandin E4 (EP4) receptor antagonist, and celecoxib: a comparison of pharmacological profiles. Clin Transl Sci. 2018;11:46‐53. doi:10.1111/cts.1249
    1. Kunikata T, Tanaka A, Miyazawa T, Kato S, Takeuchi K. 16,16‐Dimethyl prostaglandin E2 inhibits indomethacin‐induced small intestinal lesions through EP3 and EP4 receptors. Dig Dis Sci. 2002;47(4):894‐904. doi:10.1023/a:1014725024519
    1. Aoi M, Aihara E, Nakashima M, Takeuchi K. Participation of prostaglandin E receptor EP4 subtype in duodenal bicarbonate secretion in rats. Am J Physiol Gastrointest Liver Physiol. 2004;287:G96‐G103. doi:10.1152/ajpgi.00038.2004
    1. Tai FWD, McAlindon ME. Non‐steroidal anti‐inflammatory drugs and the gastrointestinal tract. Clin Med. 2021;21(2):131‐134. doi:10.7861/clinmed.2021-0039
    1. Murase A, Taniguchi Y, Tonai‐Kachi H, Nakao K, Takada J. In vitro pharmacological characterization of CJ‐042794, a novel, potent, and selective prostaglandin EP4 receptor antagonist. Life Sci. 2008;82:226‐232. doi:10.1016/j.lfs.2007.11.002
    1. Kawamoto H, Hara H, Araya J, et al. Prostaglandin E‐major urinary metabolite (PGE‐MUM) as a tumor marker for lung adenocarcinoma. Cancer. 2019;11:768. doi:10.3390/cancers11060768
    1. Csiki I, Morrow JD, Sandler A, et al. Targeting cyclooxygenase‐2 in recurrent non‐small cell lung cancer: A phase II trial of celecoxib and docetaxel. Clin Cancer Res. 2005;11(18):6634‐6640. doi:10.1158/1078-0432.CCR-05-0436
    1. Owonikoko TK, Park K, Govindan R, et al. Nivolumab and ipilimumab as maintenance therapy in extensive‐disease small‐cell lung cancer: CheckMate 451. J Clin Oncol. 2021;39(12):1349‐1359. doi:10.1200/JCO.20.02212
    1. Spigel DR, Vicente D, Ciuleanu TE, et al. Second‐line nivolumab in relapsed small‐cell lung cancer: CheckMate 331. Ann Oncol. 2021;32(5):631‐641. doi:10.1016/j.annonc.2021.01.071
    1. Wandmacher AM, Letsch A, Sebens S. Challenges and future perspectives of immunotherapy in pancreatic cancer. Cancer. 2021;13(16):4235. doi:10.3390/cancers13164235
    1. Bian J, Almhanna K. Pancreatic cancer and immune checkpoint inhibitors—still a long way to go. Transl Gastroenterol Hepatol. 2021;6:6. doi:10.21037/tgh.2020.04.03
    1. Hellmann MD, Paz‐Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in advanced non–small‐cell lung cancer. N Engl J Med. 2019;381(21):2020‐2031. doi:10.1056/NEJMoa1910231
    1. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122‐133. doi:10.1056/NEJMoa1302369
    1. Baas P, Scherpereel A, Nowak AK, et al. First‐line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open‐label, phase 3 trial. Lancet. 2021;397:375‐386. doi:10.1016/S0140-6736(20)32714-8

Source: PubMed

3
Tilaa