Breathing pattern, accessory respiratory muscles work, and gas exchange evaluation for prediction of NIV failure in moderate-to-severe COVID-19-associated ARDS after deterioration of respiratory failure outside ICU: the COVID-NIV observational study

Andrey I Yaroshetskiy, Zamira M Merzhoeva, Natalia A Tsareva, Natalia V Trushenko, Galia S Nuralieva, Vasily D Konanykhin, Anna P Krasnoshchekova, Sergey N Avdeev, Andrey I Yaroshetskiy, Zamira M Merzhoeva, Natalia A Tsareva, Natalia V Trushenko, Galia S Nuralieva, Vasily D Konanykhin, Anna P Krasnoshchekova, Sergey N Avdeev

Abstract

Background: Data on the efficacy of non-invasive ventilation (NIV) after progression of respiratory failure in patients who have already received oxygen therapy, or CPAP outside ICU is limited. The study aimed to find predictors of NIV failure based on breathing pattern, gas exchange, and accessory respiratory muscles evaluation in patients who progressed to moderate-to-severe COVID-19 ARDS.

Methods: This was a prospective observational study in patients with moderate-to-severe COVID-19-ARDS on NIV (n = 80) admitted to COVID-ICU of Sechenov University. The combined success rate for conventional oxygen and CPAP outside ICU was 78.6% (440 of 560 patients). The primary endpoints were intubation rate and mortality. We measured respiratory rate, exhaled tidal volume (Vte), mean peak inspiratory flow (PIF), inspiratory time (Ti), PaO2, SpO2, end-tidal carbon dioxide (PETCO2), and Patrick score, and calculated ROX index, PaO2/FiO2, ventilatory ratio, and alveolar dead space (Vdalv/Vt) on Days 1, 3, 5, 7, 10, and 14. For all significant differences between NIV success and failure groups in measured data, we performed ROC analysis.

Results: NIV failure rate in ICU after deterioration of respiratory failure outside ICU was 71.3% (n = 57). Patients with the subsequent NIV failure were older at inclusion, more frail, had longer duration of disease before ICU admission, and higher rate of CPAP use outside ICU. ROC-analysis revealed that the following respiratory parameters after 48 h of NIV can serve as a predictors for NIV failure in moderate-to-severe COVID-19-associated ARDS: PaO2/FiO2 < 112 mmHg (AUROC 0.90 (0.93-0.97), p < 0.0001); PETCO2 < 19.5 mmHg (AUROC 0.84 (0.73-0.94), p < 0.0001); VDalv/VT > 0.43 (AUROC 0.78 (0.68-0.90), p < 0.0001); ROX-index < 5.02 (AUROC 0.89 (0.81-0.97), p < 0.0001); Patrick score > 2 points (AUROC 0.87 (0.78-0.96), p = 0.006).

Conclusion: In patients who progressed to moderate-to-severe COVID-19-ARDS probability of NIV success rate was about 1/3. Prediction of the NIV failure can be made after 48 h based on ROX index < 5.02, PaO2/FiO2 < 112 mmHg, PETCO2 < 19.5 mmHg, and Patrick score > = 2.

Trial registration: ClinicalTrials.gov identifier: NCT04667923 , registered on 16/12/2020.

Keywords: ARDS; Accessory respiratory muscles; Alveolar dead space; COVID-19; NIV; Noninvasive ventilation; ROX-index.

Conflict of interest statement

AIY reported personal fees from GE, Philips Respironics, Covidien, Fisher & Paykel, Drager, Triton Electronics, Mindray, Pfizer, BBraun, Gilead outside the submitted work. SNA reported personal fees from Behringer Ingelheim, Pfizer, Novartis, AstraZeneca, Chiesi outside the submitted work. No other disclosers were reported.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The study cohort selection
Fig. 2
Fig. 2
Clinical frailty score in NIV success (green) and NIV failure (blue) groups
Fig. 3
Fig. 3
The gas exchange and respiratory pattern in NIV success and NIV failure groups during 14 days. A PaO2/FiO2. B Respiratory Rate. C ROX index. D End-tidal carbon dioxide. E Alveolar dead space to tidal volume ratio. F Patrick score. Data on NIV success (green) and NIV failure (blue) are presented as medians and 95% confidence intervals (A-E), boxplots (F). The x-axis represents days after initiation of non-invasive ventilation. Abbreviations: PaO2- partial pressure of oxygen in arterial blood; FiO2—inspiratory oxygen fraction; VDalv—alveolar dead space; VT- tidal volume; PetCO2—end-tidal partial pressure of carbon dioxide. * p-value < 0.05, comparison between NIV success and NIV failure groups (Mann-Whitney U test). ** p-value < 0.01, comparison between NIV success and NIV failure groups (Mann-Whitney U test). § p-value < 0.001, comparison between NIV success and NIV failure groups (Mann-Whitney U test)
Fig. 4
Fig. 4
Prediction of NIV failure after 48 h basing on gas exchange and respiratory pattern parameters (ROC curves). A PaO2/FiO2. B Respiratory Rate. C ROX index. D End-tidal carbon dioxide. E Alveolar dead space to tidal volume ratio. F Patrick score. Abbreviations: PaO2- partial pressure of oxygen in arterial blood; FiO2—inspiratory oxygen fraction; VDalv—alveolar dead space; VT- tidal volume; PetCO2- end-tidal partial pressure of carbon dioxide
Fig. 5
Fig. 5
Prediction of NIV failure after 48 h basing on gas exchange and respiratory pattern parameters (Odds ratios). Data presented as odds ratio and 95% confidence interval. Abbreviations: PaO2- partial pressure of oxygen in arterial blood; FiO2—inspiratory oxygen fraction; VDalv—alveolar dead space; VT- tidal volume; PetCO2- end-tidal partial pressure of carbon dioxide, RR—respiratory rate

References

    1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, the Northwell COVID-19 Research Consortium. Barnaby DP, Becker LB, Chelico JD, Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J, Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM, Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized With COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059. doi: 10.1001/jama.2020.6775.
    1. Roesthuis L, van den Berg M, van der Hoeven H. Advanced respiratory monitoring in COVID-19 patients: use less PEEP! Crit Care. 2020;24(1):230. doi: 10.1186/s13054-020-02953-z.
    1. Sella N, Zarantonello F, Andreatta G, Gagliardi V, Boscolo A, Navalesi P. Positive end-expiratory pressure titration in COVID-19 acute respiratory failure: electrical impedance tomography vs. PEEP/FiO2 tables. Crit Care. 2020;24:540. doi: 10.1186/s13054-020-03242-5.
    1. Yaroshetskiy AI, Avdeev SN, Politov ME, Nogtev PV, Beresneva VG, Sorokin YD, Konanykhin VD, Krasnoshchekova AP, Merzhoeva ZM, Tsareva NA, Trushenko NV, Mandel IA, Yavorovskiy AG. Potential for the lung recruitment and the risk of lung overdistension during 21 days of mechanical ventilation in patients with COVID-19 after noninvasive ventilation failure: the COVID-VENT observational trial. BMC Anesthesiol. 2022;22(1):59. doi: 10.1186/s12871-022-01600-0.
    1. Cammarota G, Esposito T, Azzolina D, Cosentini R, Menzella F, Aliberti S, Coppadoro A, Bellani G, Foti G, Grasselli G, Cecconi M, Pesenti A, Vitacca M, Lawton T, Ranieri VM, Di Domenico SL, Resta O, Gidaro A, Potalivo A, Nardi G, Brusasco C, Tesoro S, Navalesi P, Vaschetto R, De Robertis E. Noninvasive respiratory support outside the intensive care unit for acute respiratory failure related to coronavirus-19 disease: a systematic review and meta-analysis. Crit Care. 2021;25(1):268. doi: 10.1186/s13054-021-03697-0.
    1. Grieco DL, Menga LS, Cesarano M, Rosà T, Spadaro S, Bitondo MM, Montomoli J, Falò G, Tonett T, Cutuli SL, Pintaudi G, Tanzarella ES, Piervincenzi E, Bongiovanni F, Dell'Anna AM, Delle Cese L, Berardi C, Carelli S, Bocci MG, Montini L, Bello G, Natalini D, De Pascale G, Velardo M, Volta CA, Ranieri VM, Conti G, Maggiore SM, Antonelli M. COVID-ICU Gemelli Study Group. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA. 2021;325(17):1731–1743. doi: 10.1001/jama.2021.4682.
    1. Perkins GD, Ji C, Connolly BA, Couper K, Lall R, Baillie JK, Bradley JM, Dark P, Dave C, De Soyza A, Dennis AV, Devrell A, Fairbairn S, Ghani H, Gorman EA, Green CA, Hart N, Hee SW, Kimbley Z, Madathil S, McGowan N, Messer B, Naisbitt J, Norman C, Parekh D, Parkin EM, Patel J, Regan SE, Ross C, Rostron AJ, Saim M, Simonds AK, Skilton E, Stallard N, Steiner M, Vancheeswaran R, Yeung J, McAuley DF, RECOVERY-RS Collaborators Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA. 2022;327(6):546–558. doi: 10.1001/jama.2022.0028.
    1. Wendel-Garcia PD, Mas A, González-Isern C, Ferrer R, Máñez R, Masclans JR, Sandoval E, Vera P, Trenado J, Fernández R, Sirvent JM, Martínez M, Ibarz M, Garro P, Lopera JL, Bodí M, Yébenes-Reyes JC, Triginer C, Vallverdú I, Baró A, Bodí F, Saludes P, Valencia M, Roche-Campo F, Huerta A, Cambra FJ, Barberà C, Echevarria J, Peñuelas O, Mancebo J, UCIsCAT study group Non-invasive oxygenation support in acutely hypoxemic COVID-19 patients admitted to the ICU: a multicenter observational retrospective study. Crit Care. 2022;26(1):37. doi: 10.1186/s13054-022-03905-5.
    1. Weaver L, Das A, Saffaran S, Yehya N, Scott TE, Chikhani M, Laffey JG, Hardman JG, Camporota L, Bates DG. High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Ann Intensive Care. 2021;11(1):109. 10.1186/s13613-021-00904-7.
    1. Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol. 2019;85(9):1014-23. 10.23736/S0375-9393.19.13418-9.
    1. Tonelli R, Fantini R, Tabbì L, Castaniere I, Pisani L, Pellegrino MR, Della Casa G, D'Amico R, Girardis M, Nava S, Clini EM, Marchioni A. Early inspiratory effort assessment by esophageal manometry predicts noninvasive ventilation outcome in de novo respiratory failure. A pilot study. Am J Respir Crit Care Med. 2020;202(4):558–567. doi: 10.1164/rccm.201912-2512OC.
    1. Esnault P, Cardinale M, Hraiech S, Goutorbe P, Baumstrack K, Prud’homme E, Bordes J, Forel JM, Meaudre E, Papazian L, Guervilly C. High respiratory drive and excessive respiratory efforts predict relapse of respiratory failure in critically Ill patients with COVID-19. Am J Respir Crit Care Med. 2020;202(8):1173–8. 10.1164/rccm.202005-1582LE.
    1. Dargent A, Hombreux A, Roccia H, Argaud L, Cour M, Guérin C. Feasibility of non-invasive respiratory drive and breathing pattern evaluation using CPAP in COVID-19 patients. J Crit Care. 2022;69:154020. doi: 10.1016/j.jcrc.2022.154020.
    1. Patrick W, Webster K, Ludwig L, Roberts D, Wiebe P, Younes M. Noninvasive positive-pressure ventilation in acute respiratory distress without prior chronic respiratory failure. Am J Respir Crit Care Med. 1996;153(3):1005–1011. doi: 10.1164/ajrccm.153.3.8630538.
    1. Munshi L, Del Sorbo L, Adhikari NKJ, Hodgson CL, Wunsch H, Meade MO, Uleryk E, Mancebo J, Pesenti A A, Ranieri VM VM, Fan E E. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14(Supplement_4):S280–S288. doi: 10.1513/AnnalsATS.201704-343OT.
    1. Zang X, Wang Q, Zhou H, Liu S, Xue X, COVID-19 Early Prone Position Study Group Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med. 2020;46(10):1927–1929. doi: 10.1007/s00134-020-06182-4.
    1. Jagan N, Morrow LE, Walters RW, Klein LP, Wallen TJ, Chung J, Plambeck RW. The Positioned study: prone positioning in nonventilated coronavirus disease 2019 patients-a retrospective analysis. Crit Care Explor. 2020;2(10):e0229. doi: 10.1097/CCE.0000000000000229.
    1. Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernández G, García-de-Acilu M, Frat JP, Masclans JR, Ricard JD. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am J Respir Crit Care Med. 2019;199(11):1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Carteaux G, Pons M, Morin F, Tuffet S, Lesimple A, Badat B, Haudebourg AF, Perier F, Deplante Y, Guillaud C, Schlemmer F, Fois E, Mongardon N, Khellaf M, Jaffal K, Deguillard C, Grimbert P, Huguet R, Razazi K, de Prost N, Templier F, Beloncle F, Mercat A, Brochard L, Audard V, Lim P, Richard JC, Savary D, Mekontso DA. Continuous positive airway pressure for respiratory support during COVID-19 pandemic: a frugal approach from bench to bedside. Ann Intensive Care. 2021;11(1):38. doi: 10.1186/s13613-021-00828-2.
    1. Leszek A, Wozniak H, Giudicelli-Bailly A, Suh N, Boroli F, Pugin J, Grosgurin O, Marti C, Le Terrier C, Quintard H. Early measurement of ROX index in intermediary care unit is associated with mortality in intubated COVID-19 patients: a retrospective study. J Clin Med. 2022;11(2):365. doi: 10.3390/jcm11020365.
    1. Fink DL, Goldman NR, Cai J, El-Shakankery KH, Sismey GE, Gupta-Wright A, Tai CX. Ratio of oxygen saturation index to guide management of COVID-19 pneumonia. Ann Am Thorac Soc. 2021;18(8):1426–1428. doi: 10.1513/AnnalsATS.202008-934RL.
    1. Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43(2):192–199. doi: 10.1007/s00134-016-4601-3.
    1. Tobin MJ, Laghi F, Jubran A. P-SILI is not justification for intubation of COVID-19 patients. Ann Intensive Care. 2020;10(1):105. doi: 10.1186/s13613-020-00724-1.
    1. Tobin MJ, Jubran A, Laghi F. P-SILI as justification for intubation in COVID-19: readers as arbiters. Ann Intensive Care. 2020;10(1):156. doi: 10.1186/s13613-020-00774-5.
    1. Carteaux G, Millán-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, Schortgen F, Brochard L, Brun-Buisson C, Mekontso DA. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282–290. doi: 10.1097/CCM.0000000000001379.
    1. Sakuraya M, Okano H, Masuyama T, Kimata S, Hokari S. Efficacy of non-invasive and invasive respiratory management strategies in adult patients with acute hypoxaemic respiratory failure: a systematic review and network meta-analysis. Crit Care. 2021;25(1):414. doi: 10.1186/s13054-021-03835-8.
    1. COVID-ICU group, for the REVA network, COVID-ICU investigators. Benefits and risks of noninvasive oxygenation strategy in COVID-19: a multicenter, prospective cohort study (COVID-ICU) in 137 hospitals. Crit Care. 2021;25(1):421. 10.1186/s13054-021-03784-2
    1. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, Tubiolo D, Tagliabue P, Zanella A, Grasselli G, Pesenti A. potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from Coronavirus disease 2019. Crit Care Med. 2020;48:1129–1134. doi: 10.1097/CCM.0000000000004386.
    1. Coppadoro A, Benini A, Fruscio R, Verga L, Mazzola P, Bellelli G, Carbone M, Mulinacci G, Soria A, Noè B, Beck E, Di Sciacca R, Ippolito D, Citerio G, Valsecchi MG, Biondi A, Pesci A, Bonfanti P, Gaudesi D, Bellani G, Foti G. Helmet CPAP to treat hypoxic pneumonia outside the ICU: an observational study during the COVID-19 outbreak. Crit Care. 2021;25(1):80. doi: 10.1186/s13054-021-03502-y.
    1. Grieco DL, Menga LS, Cesarano M, Spadaro S, Bitondo MM, Berardi C, Rosà T, Bongiovanni F, Maggiore SM, Antonelli M, COVID-ICU Gemelli Study Group Phenotypes of patients with COVID-19 who have a positive clinical response to helmet noninvasive ventilation. Am J Respir Crit Care Med. 2022;205(3):360–364. doi: 10.1164/rccm.202105-1212LE.
    1. Bellani G, Grasselli G, Cecconi M, Antolini L, Borelli M, De Giacomi F, Bosio G, Latronico N, Filippini M, Gemma M, Giannotti C, Antonini B, Petrucci N, Zerbi SM, Maniglia P, Castelli GP, Marino G, Subert M, Citerio G, Radrizzani D, Mediani TS, Lorini FL, Russo FM, Faletti A, Beindorf A, Covello RD, Greco S, Bizzarri MM, Ristagno G, Mojoli F, Pradella A, Severgnini P, Da Macallè M, Albertin A, Ranieri VM, Rezoagli E, Vitale G, Magliocca A, Cappelleri G, Docci M, Aliberti S, Serra F, Rossi E, Valsecchi MG, Pesenti A, Foti G. Noninvasive ventilatory support of patients with COVID-19 outside the intensive care units (WARd-COVID) Ann Am Thorac Soc. 2021;18(6):1020–1026. doi: 10.1513/AnnalsATS.202008-1080OC.
    1. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46:1099–1102. doi: 10.1007/s00134-020-06033-2.
    1. Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639.
    1. Coudroy R, Frat JP, Girault C, Thille AW. Reliability of methods to estimate the fraction of inspired oxygen in patients with acute respiratory failure breathing through non-rebreather reservoir bag oxygen mask. Thorax. 2020;75(9):805–807. doi: 10.1136/thoraxjnl-2020-214863.
    1. Apigo M, Schechtman J, Dhliwayo N, et al. Development of a work of breathing scale and monitoring need of intubation in COVID-19 pneumonia. Crit Care. 2020;24:477. 10.1186/s13054-020-03176-y.
    1. Giustivi D, Bottazzini F, Belliato M. Respiratory Monitoring at Bedside in COVID-19 Patients. J Clin Med. 2021;10(21):4943. doi: 10.3390/jcm10214943.
    1. Nadeem A, Fanapour P, Apigo M, Kim S, George S. COVID-19 Pneumonia: Guiding the Decision to Intubate Based on Work of Breathing Assessment Independent of Oxygenation. Int J Crit Care Emerg Med. 2021;7:126. 10.23937/2474-3674/1510126.
    1. Sinha P, Furfaro D, Cummings MJ, Abrams D, Delucchi K, Maddali MV, He J, Thompson A, Murn M, Fountain J, Rosen A, Robbins-Juarez SY, Adan MA, Satish T, Madhavan M, Gupta A, Lyashchenko AK, Agerstrand C, Yip NH, Burkart KM, Beitler JR, Baldwin MR, Calfee CS, Brodie D, O'Donnell MR. Latent class analysis reveals COVID-19-related acute respiratory distress syndrome subgroups with differential responses to corticosteroids. Am J Respir Crit Care Med. 2021;204(11):1274–1285. doi: 10.1164/rccm.202105-1302OC.
    1. Papoutsi E, Giannakoulis VG, Xourgia E, et al. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: a systematic review and meta-analysis of non-randomized cohort studies. Crit Care. 2021;25:121. doi: 10.1186/s13054-021-03540-6.
    1. Tsolaki VS, Zakynthinos GE, Mantzarlis KD, Deskata KV, Papadonta ME, Gerovasileiou ES, Manoulakas EE, Zakynthinos E, Pantazopoulos IN, Makris DA. Driving pressure in COVID-19 acute respiratory distress syndrome is associated with respiratory distress duration before intubation. Am J Respir Crit Care Med. 2021;204(4):478–481. doi: 10.1164/rccm.202101-0234LE.
    1. Barbaro RP, MacLaren G, Boonstra PS, Iwashyna TJ, Slutsky AS, Fan E, Bartlett RH, Tonna JE, Hyslop R, Fanning JJ, Rycus PT, Hyer SJ, Anders MM, Agerstrand CL, Hryniewicz K, Diaz R, Lorusso R, Combes A, Brodie D. Extracorporeal life support organization. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the extracorporeal life support organization registry. Lancet. 2020;396:1071–1078. doi: 10.1016/S0140-6736(20)32008-0.
    1. Mustafa AK, Alexander PJ, Joshi DJ, Tabachnik DR, Cross CA, Pappas PS, Tatooles AJ. Extracorporeal membrane oxygenation for patients with COVID-19 in severe respiratory failure. JAMA Surg. 2020;155:990–2.
    1. Le Breton C, Besset S, Freita-Ramos S, Amouretti M, Billiet PA, Dao M, Dumont LM, Federici L, Gaborieau B, Longrois D, Postel-Vinay P, Vuillard C, Zucman N, Lebreton G, Combes A, Dreyfuss D, Ricard JD, Roux D. Extracorporeal membrane oxygenation for refractory COVID-19 acute respiratory distress syndrome. J Crit Care. 2020;60:10–12
    1. Levy D, Lebreton G, Pineton de Chambrun M, Hékimian G, Chommeloux J, Bréchot N, Luyt CE, Leprince P, Combes A, Schmidt M. Outcomes of patients denied extracorporeal membrane oxygenation during the COVID-19 pandemic in greater Paris, France. Am J Respir Crit Care Med. 2021;204(8):994–997. doi: 10.1164/rccm.202105-1312L.

Source: PubMed

3
Tilaa