Effect of an intensive nutrition intervention of a high protein and low glycemic-index diet on weight of kidney transplant recipients: study protocol for a randomized clinical trial

Elis Forcellini Pedrollo, Bruna Bellincanta Nicoletto, Larissa Salomoni Carpes, Júlia de Melo Cardoso de Freitas, Julia Roberta Buboltz, Cristina Carra Forte, Andrea Carla Bauer, Roberto Ceratti Manfro, Gabriela Corrêa Souza, Cristiane Bauermann Leitão, Elis Forcellini Pedrollo, Bruna Bellincanta Nicoletto, Larissa Salomoni Carpes, Júlia de Melo Cardoso de Freitas, Julia Roberta Buboltz, Cristina Carra Forte, Andrea Carla Bauer, Roberto Ceratti Manfro, Gabriela Corrêa Souza, Cristiane Bauermann Leitão

Abstract

Background: Excessive weight gain is commonly observed within the first year after kidney transplantation and is associated with negative outcomes, such as graft loss and cardiovascular events. The purpose of this study is to evaluate the effect of a high protein and low glycemic-index diet on preventing weight gain after kidney transplantation.

Methods: We designed a prospective, single-center, open-label, randomized controlled study to compare the efficacy of a high protein (1.3-1.4 g/kg/day) and low-glycemic index diet versus a conventional diet (0.8-1.0 g/kg/day of protein) on preventing weight gain after kidney transplantation. A total of 120 eligible patients 2 months after transplantation will be recruited. Patients with an estimated glomerular filtration rate through the modification of diet of renal disease (MDRD) formula < 30 mL/min/1.73 m2 or urinary albumin excretion > 300 mg/24 h will be excluded. Patients' diets will be allocated through simple sequential randomization. Patients will be followed-up for 12 months with nine clinic appointments with a dietitian and the evaluations will include nutritional assessment (anthropometrics, body composition, and resting metabolic rate) and laboratory tests. The primary outcome is weight maintenance or body weight gain under 5% after 12 months. Secondary outcomes include body composition, resting metabolic rate, satiety sensation, kidney function, and other metabolic parameters.

Discussion: Diets with higher protein content and lower glycemic index may lead to weight loss because of higher satiety sensation. However, there is a concern about the association of high protein intake and kidney damage. Nevertheless, there is little evidence on the impact of high protein intake on long-term kidney function outcome. Therefore, we designed a study to test if a high protein diet with low-glycemic index will be an effective and safe nutritional intervention to prevent weight gain in kidney transplant patients.

Trial registration: ClinicalTrials.gov identifier, NCT02883777 . Registered on 3 August 2016.

Keywords: High protein diet; Kidney transplantation; Low glycemic-index diet; Nutrition intervention; Weight.

Conflict of interest statement

Ethics approval and consent to participate

All procedures will be conducted in accordance with the ethical standards for human subject research set forth in the Declaration of Helsinki. Written informed consent will be obtained from all patients to be included in this clinical trial by the main researcher (EFP) who will have access to the final trial database. The research project was approved by the Research Ethics Committee of the Hospital de Clínicas de Porto Alegre (registration number 16-0121) and is registered in the ClinicalTrials.gov database under the identification number NCT02883777. Personal information about potential and enrolled patients will be maintained in a database in order to protect patients confidentially. Investigators will communicate trial results to participants, healthcare professionals, and other relevant groups via publication.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
SPIRIT diagram. *Timepoint of the protocol: -t0, enrolment; -t1, baseline; -t2, -t3, -t4, -t5, -t6, -t7, first semester monthly appointments; -t8, month 9; -t9, month 12

References

    1. Orazio L, Chapman J, Isbel NM, Campbell KL. Nutrition care for renal transplant recipients: an evaluation of service delivery and outcomes. J Ren Care. 2014;40:99–106. doi: 10.1111/jorc.12055.
    1. Jaggers HJ, Allman MA, Chan M. Changes in clinical profile and dietary considerations after renal transplantation. J Ren Nutr. 1996;6:12–20. doi: 10.1016/S1051-2276(96)90103-X.
    1. Teplan V, Poledne R, Schück O, Ritz E, Vítko S. Hyperlipidemia and obesity after renal transplantation. Ann Transplant. 2001;6:21–3.
    1. Johnson CP, Gallagher-Lepak S, Zhu YR, Porth C, Kelber S, Roza AM, et al. Factors influencing weight gain after renal transplantation. Transplantation. 1993;56:822–7. doi: 10.1097/00007890-199310000-00008.
    1. Nicoletto BB, Fonseca NK, Manfro RC, Gonçalves LF, Leitão CB, Souza GC. Effects of obesity on kidney transplantation outcomes: a systematic review and meta-analysis. Transplantation. 2014;98:167–76. doi: 10.1097/TP.0000000000000028.
    1. Pedrollo EF, Corrêa C, Nicoletto BB, Manfro RC, Leitão CB, Souza GC, et al. Effects of metabolic syndrome on kidney transplantation outcomes: a systematic review and meta-analysis. Transpl Int. 2016;29:1059–66. doi: 10.1111/tri.12805.
    1. Cullen TJ, McCarthy MP, Lasarev MR, Barry JM, Stadler DD. Body mass index and the development of new-onset diabetes mellitus or the worsening of pre-existing diabetes mellitus in adult kidney transplant patients. J Ren Nutr. 2014;24:116–22. doi: 10.1053/j.jrn.2013.11.002.
    1. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003;3:178–85. doi: 10.1034/j.1600-6143.2003.00010.x.
    1. Rodrigo E, Fernández-Fresnedo G, Valero R, Ruiz JC, Piñera C, Palomar R, et al. New-onset diabetes after kidney transplantation: risk factors. J Am Soc Nephrol. 2006;17(Suppl 3):S291–5. doi: 10.1681/ASN.2006080929.
    1. Heaf J, Jakobsen U, Tvedegaard E, Kanstrup IL, Fogh-Andersen N. Dietary habits and nutritional status of renal transplant patients. J Ren Nutr. 2004;14:20–5. doi: 10.1053/j.jrn.2003.09.005.
    1. Baum CL. Weight gain and cardiovascular risk after organ transplantation. JPEN J Parenter Enteral Nutr. 2001;25:114–9. doi: 10.1177/0148607101025003114.
    1. Guida B, Trio R, Laccetti R, Nastasi A, Salvi E, Perrino NR, et al. Role of dietary intervention on metabolic abnormalities and nutritional status after renal transplantation. Nephrol Dial Transplant. 2007;22:3304–10. doi: 10.1093/ndt/gfm345.
    1. Patel MG. The effect of dietary intervention on weight gains after renal transplantation. J Ren Nutr. 1998;8:137–41. doi: 10.1016/S1051-2276(98)90005-X.
    1. Lawrence IRTA, Hartley GH, Wilkinson R, Day J, Goodship THJ. The effect of dietary intervention on the management of hyperlipidemia in British renal transplant patients. J Ren Nutr. 1995;5:73–7. doi: 10.1016/1051-2276(95)90096-9.
    1. Cupisti A, Ghiadoni L, DÁlessandro C, Kardasz I, Morelli E, Panchi V, et al. Soy protein diet improves endothelial dysfunction in renal transplant patients. Nephrol Dial Transplant. 2007;22:229–34. doi: 10.1093/ndt/gfl553.
    1. Lopes IM, Martin M, Errasti P, Martínez JA. Benefits of a dietary intervention on weight loss, body composition, and lipid profile after renal transplantation. Nutrition. 1999;15:7–10. doi: 10.1016/S0899-9007(98)00137-3.
    1. Barbagallo CM, Cefalu AB, Gallo S, Rizzo M, Noto D, Cavera G. Effects of Mediterranean diet on lipid levels and cardiovascular risk in renal transplant recipients. Nephron. 1999;82:199–204. doi: 10.1159/000045403.
    1. Bernardi A, Biasia F, Piva M, Poluzzi P, Senesi G, Scaramuzzo P. Dietary protein intake and nutritional status in patients with renal transplant. Clin Nephrol. 2000;53:suppl 3-5.
    1. Astrup A, Geiker NR. Efficacy of higher protein diets for long-term weight control. How to assess quality of randomized controlled trials? Nutr Metab Cardiovasc Dis. 2014;24:220–3. doi: 10.1016/j.numecd.2014.02.003.
    1. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363:2102–13. doi: 10.1056/NEJMoa1007137.
    1. Belza A, Ritz C, Sørensen MQ, Holst JJ, Rehfeld JF, Astrup A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr. 2013;97:980–9. doi: 10.3945/ajcn.112.047563.
    1. Mikkelsen PB, Toubro S, Astrup A. Effect of fat-reduced diets on 24-h energy expenditure: comparisons between animal protein, vegetable protein, and carbohydrate. Am J Clin Nutr. 2000;72:1135–41.
    1. Schmidt JB, Gregersen NT, Pedersen SD, Arentoft JL, Ritz C, Schwartz TW, et al. Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men. Am J Physiol Endocrinol Metab. 2014;306:E1248–56. doi: 10.1152/ajpendo.00569.2013.
    1. Wycherley TP, Moran LJ, Clifton PM, Noakes M, Brinkworth GD. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;96:1281–98. doi: 10.3945/ajcn.112.044321.
    1. Aller EE, Larsen TM, Claus H, Lindroos AK, Kafatos A, Pfeiffer A, et al. Weight loss maintenance in overweight subjects on ad libitum diets with high or low protein content and glycemic index: the DIOGENES trial 12-month results. Int J Obes. 2014;38:1511–7. doi: 10.1038/ijo.2014.52.
    1. Dong JY, Zhang YH, Wang P, Qin LQ. Meta-analysis of dietary glycemic load and glycemic index in relation to risk of coronary heart disease. Am J Cardiol. 2012;109:1608–13. doi: 10.1016/j.amjcard.2012.01.385.
    1. Thomas DE, Elliott EJ, Baur L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst Rev. 2007;3:CD005105.
    1. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr. 2002;761:281S–5S.
    1. Larsen TM, Dalskov SM, van Baak M, Jebb SA, Papadaki A, Pfeiffer AF, et al. Diet, Obesity, and Genes (Diogenes) Project. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363:2102–13. doi: 10.1056/NEJMoa1007137.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K. SPIRIT 2013 Statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Souza GC, Costa C, Scalco R, Gonçalves LF, Manfro RC. Serum leptin, insulin resistance, and body fat after renal transplantation. J Ren Nutr. 2008;18:479–88. doi: 10.1053/j.jrn.2008.05.008.
    1. Dallal GE. 2013. . Accessed 22 Jan 2017.
    1. Joint FAO/WHO Expert Consultation on Carbohydrates in Human Nutrition Carbohydrates in human nutrition. Report of a Joint FAO/ WHO Expert Consultation. FAO Food Nutr Pap. 1998;66:1–140.
    1. USDA SR 17 Research Quality Nutrient Data . Composition of foods. Washington: USDA, Agricultural Research Service; 2007.
    1. Atkinson FS, Foster-Powell K, Brand-Miller J. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31:2281–3. doi: 10.2337/dc08-1239.
    1. Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000;24:38–48. doi: 10.1038/sj.ijo.0801083.
    1. Metges CC, Barth CA. Metabolic Consequences of a high dietary-protein intake in adulthood: assessment of the available evidence. J Nutr. 2000;130:886–9.
    1. Fouque D, Laville M, Boissel JP. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2006;2:CD001892.
    1. Brenner MJ, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307:652–9. doi: 10.1056/NEJM198207223070403.
    1. Bernardi A, Biasia F, Pati T, Piva M, D'Angelo A, Bucciante G. Long-term protein intake control in kidney transplant recipients: effect in kidney graft function in nutritional status. Am J Kidney Dis. 2003;41(Suppl 1):S146–52. doi: 10.1053/ajkd.2003.50105.
    1. Van Den Berg E, Engberink MF, Brink EJ, van Baak MA, Gans RO, Navis G, et al. Dietary protein, blood pressure and renal function in renal function in renal transplant recipients. Br J Nutr. 2013;109:1463–70. doi: 10.1017/S0007114512003455.
    1. Deetman PE, Said MY, Kromhout D, Dullaart RP, Kootstra-Ros JE, Sanders JS, et al. Urinary urea excretion and long-term outcome after renal transplantation. Transplantation. 2015;99:1009–15. doi: 10.1097/TP.0000000000000464.
    1. Said MY, Deetman PE, de Vries APJ, Zelle DM, Gans ROB, Navis G, et al. Causal path analyses of the association of protein intake with risk of mortality and graft failure in renal transplant recipients. Clin Transplant. 2015;29:447–57. doi: 10.1111/ctr.12536.
    1. Chadban S, Chan M, Fry K, Patwardhan A, Ryan C, Trevillian P, et al. The CARI guidelines. Nutritional management of overweight and obesity in adult kidney transplant recipients. Nephrology (Carlton) 2010;15 Suppl 1:S52–5. doi: 10.1111/j.1440-1797.2010.01235.x.
    1. Kasiske BL, Wheeler DC. Kidney disease: improving Glol outcomes—an update. Nephrol Dial Transplant. 2014;29:763–9. doi: 10.1093/ndt/gft441.
    1. Baker R, Jardine A, Andrews P. Clinical guidelines: post-operative care of the kidney transplant recipient. Hampshire: UK Renal Association. 2011. . Accessed 22 Jan 2017.

Source: PubMed

3
Tilaa