Benefit-to-risk balance of bronchoalveolar lavage in the critically ill. A prospective, multicenter cohort study

Toufik Kamel, Julie Helms, Ralf Janssen-Langenstein, Achille Kouatchet, Antoine Guillon, Jeremy Bourenne, Damien Contou, Christophe Guervilly, Rémi Coudroy, Marie Anne Hoppe, Jean Baptiste Lascarrou, Jean Pierre Quenot, Gwenhaël Colin, Paris Meng, Jérôme Roustan, Christophe Cracco, Mai-Anh Nay, Thierry Boulain, Clinical Research in Intensive Care Sepsis Group (CRICS-TRIGGERSEP), Charlotte Salmon-Gandonniere, Stephan Ehrmann, Emmanuelle Mercier, Julien Grouille, Pierre-François Dequin, Walid Darwiche, Denis Garot, Marlene Morisseau, Laetitia Bodet Contentin, Francis Schneider, Vincent Castelain, Max Guillot, Vivien Danielo, Jean Etienne Herbrecht, Quentin Maestraggi, Marie Line Harlay, Baptiste Michard, Maleka Schenck, Florence Fagot Gandet, Guillaume Morel, Vincent Souday, Marc Pierrot, Nicolas Lerolle, Satar Morttaza, Raphaël Clere-Jehl, Hamid Merdji, Ferhat Meziani, Laurent Papazian, Jean Marie Forel, Sami Hraiech, Melanie Adda, Karima Baraka, Florence Daviet, Jo-Anna Tirolien, Gaëtan Plantefeve, Olivier Lesieur, Maxime Leloup, Jean Reignier, Charlotte Garret, Anthony Lemeur, Isabelle Vinatier, David Schnell, Nicolas Bercault, Dalila Benzekri-Lefevre, Grégoire Muller, Anne Bretagnol, Armelle Mathonnet, Marie Skarzynski, Isabelle Runge, François Barbier, Sophie Jacquier, Toufik Kamel, Julie Helms, Ralf Janssen-Langenstein, Achille Kouatchet, Antoine Guillon, Jeremy Bourenne, Damien Contou, Christophe Guervilly, Rémi Coudroy, Marie Anne Hoppe, Jean Baptiste Lascarrou, Jean Pierre Quenot, Gwenhaël Colin, Paris Meng, Jérôme Roustan, Christophe Cracco, Mai-Anh Nay, Thierry Boulain, Clinical Research in Intensive Care Sepsis Group (CRICS-TRIGGERSEP), Charlotte Salmon-Gandonniere, Stephan Ehrmann, Emmanuelle Mercier, Julien Grouille, Pierre-François Dequin, Walid Darwiche, Denis Garot, Marlene Morisseau, Laetitia Bodet Contentin, Francis Schneider, Vincent Castelain, Max Guillot, Vivien Danielo, Jean Etienne Herbrecht, Quentin Maestraggi, Marie Line Harlay, Baptiste Michard, Maleka Schenck, Florence Fagot Gandet, Guillaume Morel, Vincent Souday, Marc Pierrot, Nicolas Lerolle, Satar Morttaza, Raphaël Clere-Jehl, Hamid Merdji, Ferhat Meziani, Laurent Papazian, Jean Marie Forel, Sami Hraiech, Melanie Adda, Karima Baraka, Florence Daviet, Jo-Anna Tirolien, Gaëtan Plantefeve, Olivier Lesieur, Maxime Leloup, Jean Reignier, Charlotte Garret, Anthony Lemeur, Isabelle Vinatier, David Schnell, Nicolas Bercault, Dalila Benzekri-Lefevre, Grégoire Muller, Anne Bretagnol, Armelle Mathonnet, Marie Skarzynski, Isabelle Runge, François Barbier, Sophie Jacquier

Abstract

Purpose: To assess the benefit-to-risk balance of bronchoalveolar lavage (BAL) in intensive care unit (ICU) patients.

Methods: In 16 ICUs, we prospectively collected adverse events during or within 24 h after BAL and assessed the BAL input for decision making in consecutive adult patients. The occurrence of a clinical adverse event at least of grade 3, i.e., sufficiently severe to need therapeutic action(s), including modification(s) in respiratory support, defined poor BAL tolerance. The BAL input for decision making was declared satisfactory if it allowed to interrupt or initiate one or several treatments.

Results: We included 483 BAL in 483 patients [age 63 years (interquartile range (IQR) 53-72); female gender: 162 (33.5%); simplified acute physiology score II: 48 (IQR 37-61); immunosuppression 244 (50.5%)]. BAL was begun in non-intubated patients in 105 (21.7%) cases. Sixty-seven (13.9%) patients reached the grade 3 of adverse event or higher. Logistic regression showed that a BAL performed by a non-experienced physician (non-pulmonologist, or intensivist with less than 10 years in the specialty or less than 50 BAL performed) was the main predictor of poor BAL tolerance in non-intubated patients [OR: 3.57 (95% confidence interval 1.04-12.35); P = 0.04]. A satisfactory BAL input for decision making was observed in 227 (47.0%) cases and was not predictable using logistic regression.

Conclusions: Adverse events related to BAL in ICU patients are not infrequent nor necessarily benign. Our findings call for an extreme caution, when envisaging a BAL in ICU patients and for a mandatory accompaniment of the less experienced physicians.

Keywords: Bronchoalveolar lavage; Fiberoptic bronchoscopy; Intensive care; Multicenter study.

Conflict of interest statement

The authors declare that they have no conflicts of interest in relation to this study.

Figures

Fig. 1
Fig. 1
Study flow chart. a Among the 1234 bronchoalveolar lavages (BAL) performed during the study period, we did not record whether they comprised cellular analysis by a pathologist or if they were mini-BAL or BAL performed with or without bronchoscopy. b Patient recruitment exceeded the 500 expected, because we anticipated a number of non-workable case report forms
Fig. 2
Fig. 2
Counts and percentages of grade 3 adverse event(s) during or after BAL according to physician’s experience and type of initial respiratory support. NS not significant. We defined the physician performing the BAL as an “experienced physician” when he/she was a pulmonologist or when he/she was an intensivist with the greatest experience (i.e., > 10 years in the specialty or > 50 BAL performed)
Fig. 3
Fig. 3
Predicted probability of obtaining a BAL of good quality according to the amount of BAL fluid recovered in the whole study population. BAL bronchoalveolar lavage. For this estimation of the probability of obtaining a BAL of good quality, logistic regression adjusted for all covariables (see Table S6 in Online Resource 1) was used. The amount of BAL fluid recovered was transformed in cubic splines to account for non-linearity. The biphasic shape of the figure shows that below 60 mL of BAL fluid recovered, the estimated probability declines in parallel with the amount of fluid recovered

References

    1. Goldstein RA, Rohatgi PK, Bergofsky EH, et al. Clinical role of bronchoalveolar lavage in adults with pulmonary disease. Am Rev Respir Dis. 1990;142:481–486. doi: 10.1164/ajrccm/142.2.481.
    1. Du Rand IA, Blaikley J, Booton R, British Thoracic Society Bronchoscopy Guideline Group et al. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE. Thorax. 2013;68(Suppl 1):i1–i44. doi: 10.1136/thoraxjnl-2013-203618.
    1. Albertini RE, Harrell JH, Kurihara N, Moser KM. Arterial hypoxemia induced by fiberoptic bronchoscopy. JAMA. 1974;230:1666–1667. doi: 10.1001/jama.1974.03240120034016.
    1. Guerra LF, Baughman RP. Use of bronchoalveolar lavage to diagnose bacterial pneumonia in mechanically ventilated patients. Crit Care Med. 1990;18:169–173. doi: 10.1097/00003246-199002000-00009.
    1. Hertz MI, Woodward ME, Gross CR, Swart M, Marcy TW, Bitterman PB. Safety of bronchoalveolar lavage in the critically ill, mechanically ventilated patient. Crit Care Med. 1991;19:1526–1532. doi: 10.1097/00003246-199112000-00015.
    1. Steinberg KP, Mitchell DR, Maunder RJ, Milberg JA, Whitcomb ME, Hudson LD. Safety of bronchoalveolar lavage in patients with adult respiratory distress syndrome. Am Rev Respir Dis. 1993;148:556–561. doi: 10.1164/ajrccm/148.3.556.
    1. Baumann HJ, Klose H, Simon M, Ghadban T, Braune SA, Hennigs JK, Kluge S. Fiber optic bronchoscopy in patients with acute hypoxemic respiratory failure requiring noninvasive ventilation—a feasibility study. Crit Care. 2011;15:R179. doi: 10.1186/cc10328.
    1. Cracco C, Fartoukh M, Prodanovic H, et al. Safety of performing fiberoptic bronchoscopy in critically ill hypoxemic patients with acute respiratory failure. Intensive Care Med. 2013;39:45–52. doi: 10.1007/s00134-012-2687-9.
    1. Schnabel RM, van der Velden K, Osinski A, Rohde G, Roekaerts PM, Bergmans DC. Clinical course and complications following diagnostic bronchoalveolar lavage in critically ill mechanically ventilated patients. BMC Pulm Med. 2015;15:107. doi: 10.1186/s12890-015-0104-1.
    1. Costa ADS, Jr, Scordamaglio PR, Suzuki I, Palomino ALM, Jacomelli M. Indications, clinical outcomes and complications of 1949 flexible bronchoscopies. Einstein (Sao Paulo) 2018;16:eAO4380. doi: 10.31744/einstein_journal/2018AO4380.
    1. Al-Qadi MO, Cartin-Ceba R, Kashyap R, Kaur S, Peters SG. The diagnostic yield, safety, and impact of flexible bronchoscopy in non-HIV immunocompromised critically ill patients in the intensive care unit. Lung. 2018;196:729–736. doi: 10.1007/s00408-018-0169-8.
    1. Azoulay E, Mokart D, Lambert J, et al. Diagnostic strategy for hematology and oncology patients with acute respiratory failure: randomized controlled trial. Am J Respir Crit Care Med. 2010;182:1038–1046. doi: 10.1164/rccm.201001-0018OC.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–2963. doi: 10.1001/jama.1993.03510240069035.
    1. AARC clinical practice guideline In-vitro pH and blood gas analysis and hemoximetry. American Association for Respiratory Care. Respir Care. 1993;38:505–510.
    1. Agresti A. Analysis of ordinal categorical data. 2. New York: Wiley; 2010.
    1. Antonelli M, Conti G, Rocco M, et al. Noninvasive positive-pressure ventilation vs. conventional oxygen supplementation in hypoxemic patients undergoing diagnostic bronchoscopy. Chest. 2002;121:1149–1154. doi: 10.1378/chest.121.4.1149.
    1. Maitre B, Jaber S, Maggiore SM, et al. Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic patients. A randomized double-blind study using a new device. Am J Respir Crit Care Med. 2000;162(3 Pt 1):1063–1067. doi: 10.1164/ajrccm.162.3.9910117.
    1. Simon M, Braune S, Frings D, et al. High-flow nasal cannula oxygen versus non-invasive ventilation in patients with acute hypoxaemic respiratory failure undergoing flexible bronchoscopy—a prospective randomised trial. Crit Care. 2014;18:712. doi: 10.1186/s13054-014-0712-9.
    1. Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Kim EJ, Jung CY, Kim KC. Effectiveness and safety of highflow nasal cannula oxygen delivery during bronchoalveolar lavage in acute respiratory failure patients. Tuberc Respir Dis. 2018;81:319–329. doi: 10.4046/trd.2017.0122.
    1. La Combe B, Messika J, Labbé V, et al. High-flow nasal oxygen for bronchoalveolar lavage in acute respiratory failure patients. Eur Respir J. 2016;47:1283–1286. doi: 10.1183/13993003.01883-2015.
    1. Service JA, Bain JS, Gardner CP, McNarry AF. Prospective experience of high-flow nasal oxygen during bronchoscopy in 182 patients: a feasibility study. J Bronchology Interv Pulmonol. 2019;26:66–70. doi: 10.1097/LBR.0000000000000533.
    1. Bauer PR, Chevret S, Yadav H, Efraim Investigators and The Nine-I Study Group et al. Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy. Eur Respir J. 2019;54:1802442. doi: 10.1183/13993003.02442-2018.
    1. Bone RC, Aviles A, Faber LP. Guidelines for competency and training in fiberoptic bronchoscopy. Section on bronchoscopy, American College of Chest Physicians. Chest. 1982;81:739. doi: 10.1016/S0012-3692(16)57762-9.
    1. Febvre M, Trosini-Desert V, Atassi K, Endoscopy Working Group of the French Society of Pulmonary Medicine et al. Diagnostic flexible bronchoscopy. recommendations of the endoscopy working group of the French Society of Pulmonary Medicine. Rev Mal Respir. 2007;24:1363–1392. doi: 10.1016/S0761-8425(07)78513-3.
    1. Libby LJ, Gelbman BD, Altorki NK, Christos PJ, Libby DM. Surgical lung biopsy in adult respiratory distress syndrome: a meta-analysis. Ann Thorac Surg. 2014;98:1254–1260. doi: 10.1016/j.athoracsur.2014.05.029.
    1. Wang JY, Chang YL, Lee LN, Chen JH, Tang JL, Yang PC, Lee YC. Diffuse pulmonary infiltrates after bone marrow transplantation: the role of open lung biopsy. Ann Thorac Surg. 2004;78:267–272. doi: 10.1016/j.athoracsur.2004.03.002.
    1. Esposito S, Mencacci A, Cenci E, Camilloni B, Silvestri E, Principi N. Multiplex platforms for the identification of respiratory pathogens: are they useful in pediatric clinical practice? Front Cell Infect Microbiol. 2019;9:196. doi: 10.3389/fcimb.2019.00196.
    1. Clavel M, Barraud O, Moucadel V, Meynier F, Karam E, Ploy MC, François B, VALIBI Study Group Molecular quantification of bacteria from respiratory samples in patients with suspected ventilator-associated pneumonia. Clin Microbiol Infect. 2016;22:812–812. doi: 10.1016/j.cmi.2016.06.013.
    1. Lacroix M, Barraud O, Clavel M, et al. Rapid quantification of Staphylococcus aureus from endotracheal aspirates of ventilatedpatients: a proof-of-concept study. Diagn Microbiol Infect Dis. 2015;83:117–120. doi: 10.1016/j.diagmicrobio.2015.06.014.
    1. Peña E, Souza CA, Escuissato DL, Gomes MM, Allan D, Tay J, Dennie CJ. Noninfectious pulmonary complications after hematopoietic stem cell transplantation: practical approach to imaging diagnosis. Radiographics. 2014;34:663–683. doi: 10.1148/rg.343135080.
    1. Tanaka N, Kunihiro Y, Yanagawa N. Infection in immunocompromised hosts: imaging. J Thorac Imaging. 2018;33:306–321. doi: 10.1097/RTI.0000000000000342.
    1. Amann A, Costello Bde L, Miekisch W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8:034001. doi: 10.1088/1752-7155/8/3/034001.
    1. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–e111. doi: 10.1093/cid/ciw353.
    1. Torres A, Niederman MS, Chastre J. The International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT) Eur Respir J. 2017;50:1700582. doi: 10.1183/13993003.00582-2017.

Source: PubMed

3
Tilaa