Dietary triggers of gut inflammation following exclusive enteral nutrition in children with Crohn's disease: a pilot study

Konstantinos Gkikas, Michael Logan, Ben Nichols, Umer Z Ijaz, Clare M Clark, Vaios Svolos, Lisa Gervais, Hazel Duncan, Vikki Garrick, Lee Curtis, Elaine Buchanan, Tracey Cardigan, Lawrence Armstrong, Caroline Delahunty, Diana M Flynn, Andrew R Barclay, Rachel Tayler, Simon Milling, Richard Hansen, Richard K Russell, Konstantinos Gerasimidis, Konstantinos Gkikas, Michael Logan, Ben Nichols, Umer Z Ijaz, Clare M Clark, Vaios Svolos, Lisa Gervais, Hazel Duncan, Vikki Garrick, Lee Curtis, Elaine Buchanan, Tracey Cardigan, Lawrence Armstrong, Caroline Delahunty, Diana M Flynn, Andrew R Barclay, Rachel Tayler, Simon Milling, Richard Hansen, Richard K Russell, Konstantinos Gerasimidis

Abstract

Background: The anti-inflammatory effect of exclusive enteral nutrition on the gut of children with Crohn's disease is rapidly lost after food reintroduction. This study assessed disease dietary triggers following successful treatment with exclusive enteral nutrition.

Methods: Nutrient intake, dietary patterns and dietary biomarkers in faeces (gluten immunogenic peptides, undigestible starch, short chain fatty acids) were assessed in 14 children with Crohn's disease during early food reintroduction, following exclusive enteral nutrition. Groups above (Group A) and below (Group B) the median levels of faecal calprotectin after food reintroduction were assigned for comparative analysis.

Results: Intakes of fibre, gluten-containing cereals and red and processed meat were significantly higher in Group A than Group B; (median [Q1, Q3], g/day; Fibre: 12.1 [11.2, 19.9] vs. 9.9 [7.6, 12.1], p = 0.03; Red and processed meat: 151 [66.7, 190] vs. 63.3 [21.7, 67], p = 0.02; gluten-containing cereals: 289 [207, 402] vs. 203 [61, 232], p = 0.035). A diet consisting of cereals and meat products was predictive (92% accuracy) of higher faecal calprotectin levels after food reintroduction. In faeces, butyrate levels, expressed as absolute concentration and relative abundance, were higher in Group A than Group B by 28.4 µmol/g (p = 0.015) and 6.4% (p = 0.008), respectively. Levels of gluten immunogenic peptide and starch in faeces did not differ between the two groups.

Conclusions: This pilot study identified potential dietary triggers of gut inflammation in children with Crohn's disease after food reintroduction following treatment with exclusive enteral nutrition.

Trial registration: Clinical trials.gov registration number: NCT02341248; Clinical trials.gov URL: https://ichgcp.net/clinical-trials-registry/NCT02341248 (retrospectively registered).

Keywords: Crohn’s disease; Dietary triggers; Faecal calprotectin; Fibre; Food reintroduction; Gluten; Meat; Short chain fatty acids.

Conflict of interest statement

RH has received speakers/consultancy fees or conference support from Nutricia, and 4D Pharma. RKR has received speaker's fees, travel support and/ or participated in medical board meetings with Nestle, MSD Immunology, AbbVie, Dr Falk, Takeda, Napp, Mead Johnson, Nutricia & 4D Pharma. RH & RKR are supported by an NHS Research Scotland Senior Career Researcher Fellowship. K Gerasimidis has received research grants, speakers’ fees and had conference attendance paid by Nutricia/Nestle, Nutricia-Danone, Baxter, Abbott, and Dr Falk. The rest of the authors (K Gkikas, ML, BN, UZI, CMC, VS, LG, HD, VG, LC, EB, TC, LA, CD, DMF, ARB, RT and SM) have no competing interests to report.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Comparison of food group intake between the two groups in children with Crohn's Disease during food reintroduction. Group A: patients with faecal calprotectin levels above the median levels at food reintroduction, Group B: patients with faecal calprotectin values below the median levels at food reintroduction * Intake of non-alcoholic beverages has been divided by 10 for both groups for better visualisation. Red diamond indicates significant differences between Group A and B (p = 0.03)
Fig. 2
Fig. 2
Correlations between nutrient and food intake with faecal calprotectin levels in children with Crohn's Disease after food reintroduction
Fig. 3
Fig. 3
Results from subset regression analysis showing food-group models predicting classification of patients in the two FC groups. Food groups coloured with red indicate positive association (i.e., harmful) and with blue negative (i.e., beneficial) association with assignment of patients in the group with higher FC levels during food reintroduction (Group A) (higher FC levels during food reintroduction). OOB error: Out of bag error rate, showing percentage of misclassification of patients to their respective FC groups (Group A/B) for each different food-group model identified from random forest analysis. Fish and fish-related products were removed from analysis, as they were consumed by one patient

References

    1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114):2769–2778.
    1. Khalili H, Håkansson N, Chan SS, Chen Y, Lochhead P, Ludvigsson JF, et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn's disease: results from two large prospective cohort studies. Gut. 2020;69(9):1637–1644.
    1. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, et al. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology. 2013;145(5):970–977.
    1. Levine A, Sigall Boneh R, Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut. 2018;67(9):1726–1738.
    1. Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J Crohns Colitis. 2014;8(10):1179–1207.
    1. Narula N, Dhillon A, Zhang D, Sherlock ME, Tondeur M, Zachos M. Enteral nutritional therapy for induction of remission in Crohn's disease. Cochrane Database Syst Rev. 2018;4(4):Cd000542.
    1. Logan M, Ijaz UZ, Hansen R, Gerasimidis K, Russell RK. Letter: reproducible evidence shows that exclusive enteral nutrition significantly reduces faecal calprotectin concentrations in children with active Crohn's disease. Aliment Pharmacol Ther. 2017;46(11–12):1119–1120.
    1. Gerasimidis K, Nikolaou CK, Edwards CA, McGrogan P. Serial fecal calprotectin changes in children with Crohn's disease on treatment with exclusive enteral nutrition: associations with disease activity, treatment response, and prediction of a clinical relapse. J Clin Gastroenterol. 2011;45(3):234–239.
    1. Logan M, Clark CM, Ijaz UZ, Gervais L, Duncan H, Garrick V, et al. The reduction of faecal calprotectin during exclusive enteral nutrition is lost rapidly after food re-introduction. Aliment Pharmacol Ther. 2019;50(6):664–674.
    1. Turner D, Levine A, Walters TD, Focht G, Otley A, López VN, et al. Which PCDAI Version Best Reflects Intestinal Inflammation in Pediatric Crohn Disease? J Pediatr Gastroenterol Nutr. 2017;64(2):254–260.
    1. Levine A, Griffiths A, Markowitz J, Wilson DC, Turner D, Russell RK, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17(6):1314–1321.
    1. England PH. NDNS: time trend and income analyses for Years 1 to 9. 2019.
    1. Research WCRFAIfC. Diet, nutrition, physical activity and cancer: a global perspective. Continuous Update Project Expert Report 2018.; 2018.
    1. Maconi G, Ardizzone S, Cucino C, Bezzio C, Russo AG, Bianchi PG. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World J Gastroenterol. 2010;16(34):4297–4304.
    1. Jowett SL, Seal CJ, Pearce MS, Phillips E, Gregory W, Barton JR, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut. 2004;53(10):1479–1484.
    1. Dietary reference values for food energy and nutrients for the United Kingdom. In: Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. Rep Health Soc Subj (Lond). 1991;41:1–210.
    1. Svolos V, Hansen R, Nichols B, Quince C, Ijaz UZ, Papadopoulou RT, et al. Treatment of active Crohn's disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology. 2019;156(5):1354–67.e6.
    1. Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O, Aguilera M, et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis. 2014;20(5):861–871.
    1. Gerasimidis K, Zafeiropoulou K, Mackinder M, Ijaz UZ, Duncan H, Buchanan E, et al. Comparison of clinical methods with the faecal gluten immunogenic peptide to assess gluten intake in coeliac disease. J Pediatr Gastroenterol Nutr. 2018;67(3):356–360.
    1. Kassambara A. Machine Learning Essentials: Practical Guide in R 2018.
    1. Thomas Lumley based on Fortran code by Alan Miller. leaps: Regression Subset Selection. R package version 3 2017. .
    1. Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28(5):1–26.
    1. Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2(3):18–22.
    1. Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol. 2011;106(4):563–573.
    1. Liu X, Wu Y, Li F, Zhang D. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res. 2015;35(9):753–758.
    1. Brotherton CS, Martin CA, Long MD, Kappelman MD, Sandler RS. Avoidance of fiber is associated with greater risk of Crohn's disease flare in a 6-month period. Clin Gastroenterol Hepatol. 2016;14(8):1130–1136.
    1. Opstelten JL, de Vries JHM, Wools A, Siersema PD, Oldenburg B, Witteman BJM. Dietary intake of patients with inflammatory bowel disease: a comparison with individuals from a general population and associations with relapse. Clin Nutr. 2019;38(4):1892–1898.
    1. Wedlake L, Slack N, Andreyev HJ, Whelan K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm Bowel Dis. 2014;20(3):576–586.
    1. Limketkai BN, Iheozor-Ejiofor Z, Gjuladin-Hellon T, Parian A, Matarese LE, Bracewell K, et al. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst Rev. 2019;2(2):Cd012839.
    1. Jones VA, Dickinson RJ, Workman E, Wilson AJ, Freeman AH, Hunter JO. Crohn's disease: maintenance of remission by diet. Lancet. 1985;2(8448):177–180.
    1. Gkikas K, Gerasimidis K, Milling S, Ijaz UZ, Hansen R, Russell RK. Dietary strategies for maintenance of clinical remission in inflammatory bowel diseases: are we there yet? Nutrients. 2020;12(7):201.
    1. Logan M, Gkikas K, Svolos V, Nichols B, Milling S, Gaya DR, et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease—new insights into dietary disease triggers. Aliment Pharmacol Ther. 2020;51(10):935–947.
    1. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010;105(10):2195–2201.
    1. Shoda R, Matsueda K, Yamato S, Umeda N. Therapeutic efficacy of N-3 polyunsaturated fatty acid in experimental Crohn's disease. J Gastroenterol. 1995;30(Suppl 8):98–101.
    1. Peters V, Spooren C, Pierik MJ, Weersma RK, van Dullemen HM, Festen EAM, et al. Dietary intake pattern is associated with occurrence of flares in IBD patients. J Crohns Colitis. 2021;15(8):1305–1315.
    1. Albenberg L, Brensinger CM, Wu Q, Gilroy E, Kappelman MD, Sandler RS, et al. A diet low in red and processed meat does not reduce rate of Crohn's disease flares. Gastroenterology. 2019;157(1):128–36.e5.
    1. Sugihara K, Masuda M, Nakao M, Abuduli M, Imi Y, Oda N, et al. Dietary phosphate exacerbates intestinal inflammation in experimental colitis. J Clin Biochem Nutr. 2017;61(2):91–99.
    1. de Castro MM, Corona LP, Pascoal LB, Miyamoto JÉ, Ignacio-Souza LM, de Lourdes Setsuko Ayrizono M, et al. Dietary patterns associated to clinical aspects in Crohn’s disease patients. Sci Rep. 2020;10(1):7033.
    1. Sabino J, Lewis JD, Colombel JF. Treating inflammatory bowel disease with diet: a taste test. Gastroenterology. 2019;157(2):295–297.
    1. Lee D, Albenberg L, Compher C, Baldassano R, Piccoli D, Lewis JD, et al. Diet in the pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology. 2015;148(6):1087–1106.
    1. Singh V, Yeoh BS, Walker RE, Xiao X, Saha P, Golonka RM, et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68(10):1801–1812.
    1. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–1572.
    1. Walton C, Montoya MP, Fowler DP, Turner C, Jia W, Whitehead RN, et al. Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn's disease: an observational study. Eur J Clin Nutr. 2016;70(9):1052–1056.
    1. Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn's disease. Scand J Gastroenterol. 1992;27(3):196–200.
    1. Llewellyn SR, Britton GJ, Contijoch EJ, Vennaro OH, Mortha A, Colombel JF, et al. Interactions between diet and the intestinal microbiota alter intestinal permeability and colitis severity in mice. Gastroenterology. 2018;154(4):1037–46.e2.
    1. McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr. 2011;141(5):883–889.
    1. Whelan K, Judd PA, Preedy VR, Simmering R, Jann A, Taylor MA. Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr. 2005;135(8):1896–1902.
    1. U.S. National Library of Medicine. NCT00287391: The Intensive Post Exclusive Enteral Nutrition Study (iPENS) 2020. .

Source: PubMed

3
Tilaa