Comparison of endoscopic evacuation, stereotactic aspiration and craniotomy for the treatment of supratentorial hypertensive intracerebral haemorrhage: study protocol for a randomised controlled trial

Xinghua Xu, Yi Zheng, Xiaolei Chen, Fangye Li, Huaping Zhang, Xin Ge, Xinghua Xu, Yi Zheng, Xiaolei Chen, Fangye Li, Huaping Zhang, Xin Ge

Abstract

Background: Hypertensive intracerebral haemorrhage (HICH) is the most common form of haemorrhagic stroke with the highest morbidity and mortality of all stroke types. The choice of surgical or conservative treatment for patients with HICH remains controversial. In recent years, minimally invasive surgeries, such as endoscopic evacuation and stereotactic aspiration, have been attempted for haematoma removal and offer promise. However, research evidence on the benefits of endoscopic evacuation or stereotactic aspiration is still insufficient.

Methods/design: A multicentre, randomised controlled trial will be conducted to compare the efficacy of endoscopic evacuation, stereotactic aspiration and craniotomy in the treatment of supratentorial HICH. About 1350 eligible patients from 10 neurosurgical centres will be randomly assigned to an endoscopic group, a stereotactic group and a craniotomy group at a 1:1:1 ratio. Randomisation is undertaken using a 24-h randomisation service accessed by telephone or the Internet. All patients will receive the corresponding surgery based on their grouping. They will be followed-up at 1, 3 and 6 months after surgery. The primary outcome is the modified Rankin Scale at 6-month follow-up. Secondary outcomes include: haematoma clearance rate; Glasgow Coma Scale 7 days after surgery; rebleeding rate; intracranial infection rate; hospitalisation time; mortality at 1 month and 3 months after surgery; the Barthel Index and the WHO quality of life at 3 months and 6 months after surgery.

Discussion: The trial aims to investigate whether endoscopic evacuation and stereotactic aspiration could improve the outcome of supratentorial HICH compared with craniotomy. The trial will help to determine the best surgical method for the treatment of supratentorial HICH.

Trial registration: ClinicalTrials.gov, ID: NCT02811614 . Registered on 20 June 2016.

Keywords: Craniotomy; Endoscopic evacuation; Intracerebral haemorrhage; Randomised controlled trial; Stereotactic aspiration.

Conflict of interest statement

Ethics approval and consent to participate

The study has been approved by a central ethics committee, the Institutional Review Board (IRB) of The Chinese PLA General Hospital (approval number: S2016-074-01). Any amendment will be submitted to the Local Ethics Committee. All participants will be told about the benefits, risks, rights and responsibilities of the trial and informed consent will be signed before enrolment.

Consent for publication

Not applicable. Once patients are recruited into the study, we will use numbers to represent patients’ names.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of the study design
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) figure: the schedule of enrolment, interventions and assessments. Abbreviations: h hour, mo month, mons months, GCS Glasgow Coma Scale, mRS modified Rankin Scale, WHOQOL the World Health Organisation Quality of Life questionnaire
Fig. 3
Fig. 3
Haematoma volume measurement using the software 3D Slicer. a Preoperative brain computed tomography (CT) scan confirming left external capsular haemorrhage. b Automatic depiction of the haematoma using the threshold effect. c 3D reconstruction and volume measurement of the haematoma

References

    1. Feign VL, Lawes CMM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the 20th century. Lancet Neurol. 2003;2:43–53. doi: 10.1016/S1474-4422(03)00266-7.
    1. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76. doi: 10.1016/S1474-4422(09)70340-0.
    1. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60. doi: 10.1056/NEJM200105103441907.
    1. Weimar C, Kleine-Borgmann J. Epidemiology, prognosis and prevention of non-traumatic intracerebral hemorrhage. Curr Pharm Des. 2016 [Epub ahead of print].
    1. Vespa PM, Martin N, Zuccarello M, Awad I, Hanley DF. Surgical trials in intracerebral hemorrhage. Stroke. 2013;44:S79–82. doi: 10.1161/STROKEAHA.113.001494.
    1. Siddique MS, Fernandes HM, Arene NU, Wooldridge TD, Fenwick JD, Mendelow AD. Changes in cerebral blood flow as measured by HMPAO SPECT in patients following spontaneous intracerebral haemorrhage. Acta Neurochir Suppl. 2000;76:517–20.
    1. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63. doi: 10.1016/S1474-4422(05)70283-0.
    1. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60. doi: 10.1161/STR.0000000000000069.
    1. Auer LM, Deinsberger W, Niederkorn K, Gell G, Kleinert R, Schneider G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J Neurosurg. 1989;70:530–5. doi: 10.3171/jns.1989.70.4.0530.
    1. Batjer HH, Reisch JS, Allen BC, Plaizier LJ, Su CJ. Failure of surgery to improve outcome in hypertensive putaminal hemorrhage. A prospective randomized trial. Arch Neurol. 1990;47:1103–6. doi: 10.1001/archneur.1990.00530100071015.
    1. Juvela S, Heiskanen O, Poranen A, Valtonen S, Kuurne T, Kaste M, et al. The treatment of spontaneous intracerebral hemorrhage. A prospective randomized trial of surgical and conservative treatment. J Neurosurg. 1989;70:755–8. doi: 10.3171/jns.1989.70.5.0755.
    1. Morgenstern LB, Frankowski RF, Shedden P, Pasteur W, Grotta JC. Surgical treatment for intracerebral hemorrhage (STICH): a single-center, randomized clinical trial. Neurology. 1998;51:1359–63. doi: 10.1212/WNL.51.5.1359.
    1. Zuccarello M, Brott T, Derex L, Kothari R, Sauerbeck L, Tew J, et al. Early surgical treatment for supratentorial intracerebral hemorrhage: a randomized feasibility study. Stroke. 1990;30:1833–9. doi: 10.1161/01.STR.30.9.1833.
    1. Teernstra O, Evers S, Lodder J, Leffers P, Franke CL, Blaauw G, et al. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: a multicenter randomized controlled trial (SICHPA) Stroke. 2003;34:968–74. doi: 10.1161/01.STR.0000063367.52044.40.
    1. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–97. doi: 10.1016/S0140-6736(05)70233-6.
    1. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.
    1. Hattori N, Katayama Y, Maya Y, Gatherer A. Impact of stereotactic hematoma evacuation on activities of daily living during the chronic period following spontaneous putaminal hemorrhage: a randomized study. J Neurosurg. 2004;101:417–20. doi: 10.3171/jns.2004.101.3.0417.
    1. Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15:1228–37. doi: 10.1016/S1474-4422(16)30234-4.
    1. Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, et al. Minimally invasive craniopuncture therapy vs. conservative treatment for spontaneous intracerebral hemorrhage: results from a randomized clinical trial in China. Int J Stroke. 2009;4:11–6. doi: 10.1111/j.1747-4949.2009.00239.x.
    1. Sun H, Liu H, Li D, Liu L, Yang J, Wang W. An effective treatment for cerebral hemorrhage: minimally invasive craniopuncture combined with urokinase infusion therapy. Neurol Res. 2010;32:371–7. doi: 10.1179/016164110X12670144526147.
    1. Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, et al. Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke. 2012;43:2923–30. doi: 10.1161/STROKEAHA.112.667535.
    1. Zhou H, Zhang Y, Liu L, Han X, Tao Y, Tang Y, et al. A prospective controlled study: minimally invasive stereotactic puncture therapy versus conventional craniotomy in the treatment of acute intracerebral hemorrhage. BMC Neurol. 2011;11:76. doi: 10.1186/1471-2377-11-76.
    1. Nagasaka T, Tsugeno M, Ikeda H, Okamoto T, Inao S, Wakabayashi T. Early recovery and better evacuation rate in neuroendoscopic surgery for spontaneous intracerebral hemorrhage using a multifunctional cannula: preliminary study in comparison with craniotomy. J Stroke Cerebrovasc Dis. 2011;20:208–13. doi: 10.1016/j.jstrokecerebrovasdis.2009.11.021.
    1. Xu X, Chen X, Li F, Zheng X, Wang Q, Sun G, et al. Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage a comparison with craniotomy. J Neurosurg [epub ahead of print; 7 Apr 2017. doi: 10.3171/2016.10.JNS161589.]
    1. Dye JA, Dusick JR, Lee DJ, Gonzalez NR, Martin NA. Frontal bur hole through an eyebrow incision for image-guided endoscopic evacuation of spontaneous intracerebral hemorrhage. J Neurosurg. 2012;117:767–73. doi: 10.3171/2012.7.JNS111567.
    1. Xu XH, Chen XL, Zhang J, Zheng Y, Sun GC, Yu XG, et al. Comparison of the Tada formula with software slicer: precise and low-cost method for volume assessment of intracerebral hematoma. Stroke. 2014;45:3433–5. doi: 10.1161/STROKEAHA.114.007095.
    1. Schaller C, Rodhe V, Meyer B, Hassler W. Stereotactic puncture and lysis of spontaneous intracerebral hemorrhage using recombinant tissue-plasminogen activator. Neurosurgery. 1995;36:328–35. doi: 10.1227/00006123-199502000-00012.
    1. Rohde V, Rohde I, Thiex R, Ince A, Jung A, Dückers G, et al. Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: rapid reduction in hematoma volume but intensification of delayed edema formation. J Neurosurg. 2002;97:954–62. doi: 10.3171/jns.2002.97.4.0954.
    1. Barrett RJ, Hussain R, Coplin WM, Berry S, Keyl PM, Hanley DF, et al. Frameless stereotactic aspiration and thrombolysis of spontaneous intracerebral hemorrhage. Neurocrit Care. 2005;3:237–45. doi: 10.1385/NCC:3:3:237.
    1. Cho DY, Chen CC, Chang CS, Lee WY, Tso M. Endoscopic surgery for spontaneous basal ganglia hemorrhage: comparing endoscopic surgery, stereotactic aspiration, and craniotomy in noncomatose patients. Surg Neurol. 2006;65:547–55. doi: 10.1016/j.surneu.2005.09.032.
    1. Nishihara T, Morita A, Teraoka A, Kirino T. Endoscopy-guided removal of spontaneous intracerebral hemorrhage: comparison with computer tomography-guided stereotactic evacuation. Childs Nerv Syst. 2007;23:677–83. doi: 10.1007/s00381-007-0325-6.

Source: PubMed

3
Tilaa