Common and distinct lateralised patterns of neural coupling during focused attention, open monitoring and loving kindness meditation

Juliana Yordanova, Vasil Kolev, Federica Mauro, Valentina Nicolardi, Luca Simione, Lucia Calabrese, Peter Malinowski, Antonino Raffone, Juliana Yordanova, Vasil Kolev, Federica Mauro, Valentina Nicolardi, Luca Simione, Lucia Calabrese, Peter Malinowski, Antonino Raffone

Abstract

Meditation has been integrated into different therapeutic interventions. To inform the evidence-based selection of specific meditation types it is crucial to understand the neural processes associated with different meditation practices. Here we explore commonalities and differences in electroencephalographic oscillatory spatial synchronisation patterns across three important meditation types. Highly experienced meditators engaged in focused attention, open monitoring, and loving kindness meditation. Improving on previous research, our approach avoids comparisons between groups that limited previous findings, while ensuring that the meditation states are reliably established. Employing a novel measure of neural coupling - the imaginary part of EEG coherence - the study revealed that all meditation conditions displayed a common connectivity pattern that is characterised by increased connectivity of (a) broadly distributed delta networks, (b) left-hemispheric theta networks with a local integrating posterior focus, and (c) right-hemispheric alpha networks, with a local integrating parieto-occipital focus. Furthermore, each meditation state also expressed specific synchronisation patterns differentially recruiting left- or right-lateralised beta networks. These observations provide evidence that in addition to global patterns, frequency-specific inter-hemispheric asymmetry is one major feature of meditation, and that mental processes specific to each meditation type are also supported by lateralised networks from fast-frequency bands.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Grand average of the imaginary part of coherence (ICoh) as a function of frequency pooled for all investigated electrode combinations during resting state (REST), focused attention meditation (FAM), open monitoring meditation (OMM), and loving kindness meditation (LKM).
Figure 2
Figure 2
Schematic presentations of electrodes (in grey) and clusters used for analyses marked as C1, C2, C3, C4, C1-C2, C3-C4, C1-C3, C2-C4, C1-C4, and C2-C3. Electrodes in C1: F7, F5, F3, F1, FC5, FC3, FC1, C5, C3, C1; Electrodes in C2: F8, F6, F4, F2, FC6, FC4, FC2, C6, C4, C2; Electrodes in C3: CP5, CP3, CP1, P7, P5, P3, P1, PO7, PO5, O1; Electrodes in C4: CP6, CP4, CP2, P8, P6, P4, P2, PO8, PO6, O2. Inter- and intra-hemispheric connectivity is reflected by cluster-based measures of ICoh (mean of all electrode pairs between C1 and C2 for C1-C2, mean between all electrode pairs between C1 and C3 for C1-C3, etc.).
Figure 3
Figure 3
Schematic illustration of statistically significant differences in the re-distribution of strongest and weakest connections (reflected by ICoh) between the respective meditation state (FAM, OMM, LKM) and resting state for clusters in delta, theta, slow alpha, fast alpha, and beta frequency ranges. Blue colour indicates meditation-related increase (statistically significant, Bonferroni corrected, p < 3.10−4 - continuous line; trend, Bonferroni corrected, 3.10−4 < p < 3.10−2 - dashed line). Circles designate within-cluster (C1, C2, C3, C4) comparisons, lines designate intra- and inter-hemispheric comparisons for C1-C3, C1-C2, C3-C4, etc.
Figure 4
Figure 4
(A) Mean values ± standard error of ICoh difference between REST and respective meditation conditions (FAM, OMM and LKM) pooled together, for theta, alpha 1 and alpha 2 frequency bands for left-hemisphere clusters (C1, C3, and C1-C3) and right-hemisphere clusters (C2, C4, and C2-C4). Left vs. Right asymmetry common for all meditation conditions is illustrated. (B) Mean values ± standard error of ICoh difference between REST and respective meditation conditions (FAM, OMM and LKM) for the beta frequency range for left-hemisphere clusters C1, C3, and C1-C3 pooled together, and right-hemisphere clusters C2, C4, and C2-C4 pooled together. Left vs. Right asymmetry differentiating the three meditation conditions is illustrated.
Figure 5
Figure 5
Topography maps of grand average integrated connectivity (IC) presented as a difference between REST and the respective meditation condition (FAM, OMM, and LKM) for three frequency ranges (theta, alpha 2, and beta), which showed systematic differences. Blue colour indicates meditation-related increase; red colour indicates meditation-related decrease.

References

    1. Van Aalderen JR, et al. The efficacy of mindfulness-based cognitive therapy in recurrent depressed patients with and without a current depressive episode: A randomized controlled trial. Psychol. Med. 2012;42:989–1001. doi: 10.1017/S0033291711002054.
    1. Davis DM, Hayes JA. What are the benefits of mindfulness? A practice review of psychotherapy-related research. Psychother. 2011;48:198–208. doi: 10.1037/a0022062.
    1. Goyal M, et al. Meditation programs for psychological stress and well-being: A systematic review and meta-analysis. JAMA Intern. Med. 2014;174:357–368. doi: 10.1001/jamainternmed.2013.13018.
    1. Gu J, Strauss C, Bond R, Cavanagh K. How do mindfulness-based cognitive therapy and mindfulness-based stress reduction improve mental health and wellbeing? A systematic review and meta-analysis of mediation studies. Clin. Psychol. Rev. 2015;37:1–12. doi: 10.1016/j.cpr.2015.01.006.
    1. Hofmann SG, Grossman P, Hinton DE. Loving-kindness and compassion meditation: Potential for psychological interventions. Clin. Psychol. Rev. 2011;31:1126–1132. doi: 10.1016/j.cpr.2011.07.003.
    1. Heckenberg RA, Eddy P, Kent S, Wright BJ. Do workplace-based mindfulness meditation programs improve physiological indices of stress? A systematic review and meta-analysis. J. Psychosom. Res. 2018;114:62–71. doi: 10.1016/j.jpsychores.2018.09.010.
    1. McKeering P, Hwang YS. A systematic review of mindfulness-based school interventions with early adolescents. Mindfulness. 2019;10:593–610. doi: 10.1007/s12671-018-0998-9.
    1. Dorjee D. Defining contemplative science: The metacognitive self-regulatory capacity of the mind, context of meditation practice and modes of existential awareness. Front. Psychol. 2016;7:1788. doi: 10.3389/fpsyg.2016.01788.
    1. Schöne B, Gruber T, Graetz S, Bernhof M, Malinowski P. Mindful breath awareness meditation facilitates efficiency gains in brain networks: A steady-state visually evoked potentials study. Sci. Rep. 2018;8:13687. doi: 10.1038/s41598-018-32046-5.
    1. Malinowski P, Shalamanova L. Meditation and cognitive ageing: The role of mindfulness meditation in building cognitive reserve. J. Cogn. Enhan. 2017;1:107–107. doi: 10.1007/s41465-017-0029-0.
    1. Davidson RJ, Dahl CJ. Outstanding challenges in scientific research on mindfulness and meditation. Persp. Psychol. Sci. 2018;13:62–65. doi: 10.1177/1745691617718358.
    1. Pozuelos JP, Mead BR, Rueda MR, Malinowski P. Short-term mindful breath awareness training improves inhibitory control and response monitoring. Progr. Brain Res. 2019;244:137–163. doi: 10.1016/bs.pbr.2018.10.019.
    1. Carter OL, et al. Meditation alters perceptual rivalry in Tibetan Buddhist monks. Curr. Biol. 2005;15:R412–R413. doi: 10.1016/j.cub.2005.05.043.
    1. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl Acad. Sci. USA. 2004;101:16369–16373. doi: 10.1073/pnas.0407401101.
    1. Manna A, et al. Neural correlates of focused attention and cognitive monitoring in meditation. Brain Res. Bull. 2010;82:46–56. doi: 10.1016/j.brainresbull.2010.03.001.
    1. Marzetti L, et al. Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation. Front. Hum. Neurosci. 2014;8:832. doi: 10.3389/fnhum.2014.00832.
    1. Cahn BR, Polich J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 2006;132:180–211. doi: 10.1037/0033-2909.132.2.180.
    1. Dahl CJ, Lutz A, Davidson RJ. Reconstructing and deconstructing the self in three families of meditation. Trends Cogn. Sci. 2015;19:1–9. doi: 10.1016/j.tics.2015.07.001.
    1. Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ. Regulation of the neural circuitry of emotion by compassion meditation: Effects of meditative expertise. Plos One. 2008;3:e1897. doi: 10.1371/journal.pone.0001897.
    1. Raffone A, et al. Toward a brain theory of meditation. Progr. Brain Res. 2019;244:207–232. doi: 10.1016/bs.pbr.2018.10.028.
    1. Vago DR, Silbersweig DA. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness. Front. Hum. Neurosci. 2012;6:296. doi: 10.3389/fnhum.2012.00296.
    1. Kabat-Zinn, J. Mindfulness Meditation in Everyday Life (LLC, BettterListen! 2013).
    1. Khoury B, Sharma M, Rush SE, Fournier C. Mindfulness-based stress reduction for healthy individuals: A meta-analysis. J. Psychosom. Res. 2015;78:519–528. doi: 10.1016/j.jpsychores.2015.03.009.
    1. Jazaieri, H. et al. Enhancing compassion: A randomized controlled trial of a compassion cultivation training program. J. Happiness Stud.14, 1113–1126, 10.1007/s10902-012-9373-z (2013).
    1. Jazaieri H, et al. A randomized controlled trial of compassion cultivation training: Effects on mindfulness, affect, and emotion regulation. Motiv. Emot. 2014;38:23–35. doi: 10.1007/s11031-013-9368-z.
    1. Ozawa-de Silva B, Dodson-Lavelle B. An education of heart and mind: Practical and theoretical issues in teaching cognitive-based compassion training to children. Practical Matters. 2011;4:1–28.
    1. Reddy SD, et al. Cognitive-based compassion training: A promising prevention strategy for at-risk adolescents. J. Child Fam. Stud. 2013;22:219–230. doi: 10.1007/s10826-012-9571-7.
    1. Wallace B. Intersubjectivity in Indo-Tibetan Buddhism. J. Consc. Stud. 2001;8:209–230.
    1. Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW. Mind wandering and attention during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states. NeuroImage. 2012;59:750–760. doi: 10.1016/j.neuroimage.2011.07.008.
    1. Malinowski P. Neural mechanisms of attentional control in mindfulness meditation. Front. Neurosci. 2013;7:8. doi: 10.3389/fnins.2013.00008.
    1. Isbel B, Summers MJ. Distinguishing the cognitive processes of mindfulness: Developing a standardised mindfulness technique for use in longitudinal randomised control trials. Consc. Cogn. 2017;52:75–92. doi: 10.1016/j.concog.2017.04.019.
    1. Tang Y, Hölzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat. Publ. Group. 2015;16:213–225. doi: 10.1038/nrn3916.
    1. Brefczynski-Lewis JA, Lutz A, Schaefer HS, Levinson DB, Davidson RJ. Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl Acad. Sci. USA. 2007;104:11483–11488. doi: 10.1073/pnas.0606552104.
    1. Holzel BK, et al. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Persp. Psychol. Sci. 2011;6:537–559. doi: 10.1177/1745691611419671.
    1. Shapiro SL, Carlson LE, Astin JA, Freedman B. Mechanisms of mindfulness. J. Clin. Psychol. 2006;62:373–386. doi: 10.1002/jclp.20237.
    1. Ekici, Ç., Garip, G. & Van Gordon, W. The lived experiences of experienced Vipassana Mahasi meditators: An interpretative phenomenological analysis. Mindfulness 1–13, 10.1007/s12671-018-1063-4 (2018).
    1. Goldstein, J. Insight meditation: A psychology of freedom (Shambhala Publications, 2003).
    1. Lutz A, Jha AP, Dunne JD, Saron CD. Investigating the phenomenological matrix of mindfulness-related practices from a neurocognitive perspective. Am. Psychol. 2015;70:632–658. doi: 10.1037/a0039585.
    1. Buddharakkhita, A. Metta: The philosophy and practice of universal love. In Access to Insight 1–21 (Buddhist Publication Society, Wheel Publication, 1995).
    1. Lippelt DP, Hommel B, Colzato LS. Focused attention, open monitoring and loving kindness meditation: Effects on attention, conflict monitoring, and creativity - a review. Front. Psychol. 2014;5:1–5. doi: 10.3389/fpsyg.2014.01083.
    1. The Dalai Lama. An Open Heart (Little Brown and Company, New York, 2001).
    1. Barendregt, H. & Raffone, A. Conscious cognition as a discrete, deterministic and universal Turing Machine process. In Alan Turing: His work and impact (eds. Cooper, B. & van Leeuwen, J.) 92–97 (Elsevier, Amsterdam, 2013).
    1. Raffone A, Srinivasan N. An adaptive workspace hypothesis about the neural correlates of consciousness: insights from neuroscience and meditation studies. Progr. Brain Res. 2009;176:161–180. doi: 10.1016/S0079-6123(09)17620-3.
    1. Nolte G, et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 2004;115:2292–2307. doi: 10.1016/j.clinph.2004.04.029.
    1. Lehembre R, et al. Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct. Neurol. 2012;27:41–47.
    1. Notturno F, Marzetti L, Pizzella V, Uncini A, Zappasodi F. Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network. Hum. Brain Mapp. 2014;35:2220–2232. doi: 10.1002/hbm.22322.
    1. Peiker I, et al. Perceptual integration deficits in autism spectrum disorders are associated with reduced interhemispheric gamma-band coherence. J. Neurosci. 2015;35:16352–16361. doi: 10.1523/JNEUROSCI.1442-15.2015.
    1. Musaeus CS, et al. Oscillatory connectivity as a diagnostic marker of dementia due to Alzheimer’s disease. Clin. Neurophysiol. 2019;130:1889–1899. doi: 10.1016/j.clinph.2019.07.016.
    1. Fox KCR, et al. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations. Neurosci. Biobehav. Rev. 2016;65:208–228. doi: 10.1016/j.neubiorev.2016.03.021.
    1. Fox KCR, et al. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci. Biobehav. Rev. 2014;43:48–73. doi: 10.1016/j.neubiorev.2014.03.016.
    1. Lomas T, Ivtzan I, Fu CHY. A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci. Biobehav. Rev. 2015;57:401–410. doi: 10.1016/j.neubiorev.2015.09.018.
    1. Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Review of the neural oscillations underlying meditation. Front. Neurosci. 2018;12:178. doi: 10.3389/fnins.2018.00178.
    1. Amihai, I. & Kozhevnikov, M. The influence of Buddhist meditation traditions on the autonomic system and attention. BioMed Res. Intern.2015, 731579, 10.1155/2015/731579 (2015).
    1. Raffone A, Srinivasan N. Mindfulness and cognitive functions: Toward a unifying neurocognitive framework. Mindfulness. 2017;8:1–9. doi: 10.1007/s12671-016-0654-1.
    1. Tang Y-Y, Posner MI. Training brain networks and states. Trends Cogn. Sci. 2014;18:345–350. doi: 10.1016/j.tics.2014.04.002.
    1. Dehaene S, Kerszberg M, Changeux J-P. A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl Acad. Sci. USA. 1998;95:14529–14534. doi: 10.1073/pnas.95.24.14529.
    1. Dehaene S, Dudai Y, Konen C. Cognitive architectures. Neuron. 2015;88:1. doi: 10.1016/j.neuron.2015.09.046.
    1. Raffone, A., Srinivasan, N. & Barendregt, H. Attention, consciousness and mindfulness in meditation. In Psychology of Meditation (ed Nirbhay N. Singh) 147–166 (Nova Science Publications, New York, 2014).
    1. Tononi G, Edelman GM. Consciousness and complexity. Science. 1998;282:1846–1851. doi: 10.1126/science.282.5395.1846.
    1. Tononi G, Sporns O, Edelman GM. Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system. Cereb. Cortex. 1992;2:310–335. doi: 10.1093/cercor/2.4.310.
    1. Varela FJ, Lachaux J-PP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001;2:229–239. doi: 10.1038/35067550.
    1. Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn. Sci. 2008;12:163–169. doi: 10.1016/j.tics.2008.01.005.
    1. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 2010;14:277–290. doi: 10.1016/j.tics.2010.04.004.
    1. Perrin F, Pernier J, Bertrand O, Echallier JF. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 1989;72:184–187. doi: 10.1016/0013-4694(89)90180-6.
    1. Núñez, P. et al. Analysis of functional connectivity during an auditory oddball task in schizophrenia. In Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics (eds Ibáñez J., González-Vargas J., Azorín J., Akay M. & Pons J.), vol. 15, 751–755 (Springer, Cham), 10.1007/978-3-319-46669-9_123 (2017).
    1. Reinhart RMG, Woodman GF. Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J. Neurosci. 2014;34:4214–4227. doi: 10.1523/JNEUROSCI.5421-13.2014.
    1. Llinás R, Ribary U, Contreras D, Pedroarena C. The neuronal basis for consciousness. Phil. Trans. Royal Soc. London Ser. B Biol. Sci. 1998;353:1841–1849. doi: 10.1098/rstb.1998.0336.
    1. Gaillard R, et al. Converging intracranial markers of conscious access. PLoS Biol. 2009;7:472–492. doi: 10.1371/journal.pbio.1000061.
    1. Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science. 2007;315:1860–1864. doi: 10.1126/science.1138071.
    1. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201–215. doi: 10.1038/nrn755.
    1. Daitch AL, et al. Frequency-specific mechanism links human brain networks for spatial attention. Proc. Natl Acad. Sci. USA. 2013;110:19585–19590. doi: 10.1073/pnas.1307947110.
    1. Corbetta M, Shulman GL. Spatial neglect and attention networks. Ann. Rev. Neurosci. 2011;34:569–599. doi: 10.1146/annurev-neuro-061010-113731.
    1. Jung-Beeman M. Bilateral brain processes for comprehending natural language. Trends Cogn. Sci. 2005;9:512–518. doi: 10.1016/j.tics.2005.09.009.
    1. Gross J, et al. Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl Acad. Sci. USA. 2004;101:13050–13055. doi: 10.1073/pnas.0404944101.
    1. Yordanova J, et al. Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. NeuroImage. 2017;146:341–354. doi: 10.1016/j.neuroimage.2016.11.013.
    1. Cohen, M. X. Analyzing Neural Time Series Data: Theory and Practice. (The MIT Press, Cambridge, Massachusetts, 2014).
    1. VanRullen R, Koch C. Is perception discrete or continuous? Trends Cogn. Sci. 2003;7:207–213. doi: 10.1016/S1364-6613(03)00095-0.
    1. Dehaene S, Changeux J-PP. Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol. 2005;3:e141. doi: 10.1371/journal.pbio.0030141.
    1. Varela FJ. Resonant cell assemblies: a new approach to cognitive functions and neuronal synchrony. Biol. Res. 1995;28:81–95.
    1. Holzel BK, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. - Neuroimaging. 2011;191:36–43. doi: 10.1016/j.pscychresns.2010.08.006.
    1. Luders E, Clark K, Narr KL, Toga AW. Enhanced brain connectivity in long-term meditation practitioners. NeuroImage. 2011;57:1308–1316. doi: 10.1016/j.neuroimage.2011.05.075.
    1. Kurth, F., MacKenzie-Graham, A., Toga, A. W. & Luders, E. Shifting brain asymmetry: The link between meditation and structural lateralization. Soc. Cogn. Affect. Neurosci.10, 55–61, 10.1093/scan/nsu029 (2015).
    1. Edelman GM. Naturalizing consciousness: a theoretical framework. Proc. Natl Acad. Sci. USA. 2003;100:5520–5524. doi: 10.1073/pnas.0931349100.
    1. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012;16:606–617. doi: 10.1016/j.tics.2012.10.007.
    1. Mathewson, K. E. et al. Making waves in the stream of consciousness: Entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. J. Cogn. Neurosci.24, 2321–2333, 10.1162/jocn_a_00288 (2012).
    1. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci.4, 186, 10.3389/fnhum.2010.00186 (2010).
    1. Spitzer, B. & Haegens, S. Beyond the status quo: A role for beta oscillations in endogenous content (re-) activation. eNeuro4(4), ENEURO.0170-17.2017, 10.1523/ENEURO.0170-17.2017 (2017).
    1. Fries P. Rhythms for cognition: Communication through coherence. Neuron. 2015;88:220–235. doi: 10.1016/j.neuron.2015.09.034.
    1. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 2005;9:474–480. doi: 10.1016/j.tics.2005.08.011.
    1. Dehaene S, Sergent C, Changeux J-P. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc. Natl Acad. Sci. USA. 2003;100:8520–8525. doi: 10.1073/pnas.1332574100.
    1. Hjorth B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr. Clin. Neurophysiol. 1975;39:526–530. doi: 10.1016/0013-4694(75)90056-5.
    1. Makeig S, Bell AJ, Jung T-P, Ghahremani D, Sejnowski TJ. Blind separation of auditory event-related brain responses into independent components. Proc. Natl Acad. Sci. USA. 1997;94:10979–10984. doi: 10.1073/pnas.94.20.10979.

Source: PubMed

3
Tilaa