Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors?

Justina Motiejunaite, Pauline Balagny, Florence Arnoult, Laurence Mangin, Catherine Bancal, Marie-Pia d'Ortho, Justine Frija-Masson, Justina Motiejunaite, Pauline Balagny, Florence Arnoult, Laurence Mangin, Catherine Bancal, Marie-Pia d'Ortho, Justine Frija-Masson

Abstract

Since the outbreak of the coronavirus (COVID-19) pandemic, most attention has focused on containing transmission and addressing the surge of critically ill patients in acute care settings. As we enter the second phase of the pandemic, emphasis must evolve to post-acute care of COVID-19 survivors. Persisting cardiorespiratory symptoms have been reported at several months after the onset of the infection. Information is lacking on the pathophysiology of exercise intolerance after COVID-19. Previous outbreaks of coronaviruses have been associated with persistent dyspnea, muscle weakness, fatigue and reduced quality of life. The extent of Covid-19 sequelae remains to be evaluated, but persisting cardiorespiratory symptoms in COVID-19 survivors can be described as two distinct entities. The first type of post-Covid symptoms are directly related to organ injury in the acute phase, or the complications of treatment. The second type of persisting symptoms can affect patients even with mild initial disease presentation without evidence of organ damage. The mechanisms are still poorly qualified to date. There is a lack of correlation between initial symptom severity and residual symptoms at exertion. We report exercise hyperventilation as a major limiting factor in COVID-19 survivors. The origin of this hyperventilation may be related to an abnormality of ventilatory control, by either hyperactivity of activator systems (automatic and cortical ventilatory control, peripheral afferents, and sensory cortex) or failure of inhibitory systems (endorphins) in the aftermath of pulmonary infection. Hyperventilation-induced hypocapnia can cause a multitude of extremely disabling symptoms such as dyspnea, tachycardia, chest pain, fatigue, dizziness and syncope at exertion.

Keywords: COVID-19; SARS-CoV-2; cardiopulmonary exercise testing; dyspnea; exercise hyperventilation; hyperventilation syndrome; persisting symptoms.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Motiejunaite, Balagny, Arnoult, Mangin, Bancal, d’Ortho and Frija-Masson.

References

    1. Ackermann M., Verleden S. E., Kuehnel M., Haverich A., Welte T., Laenger F., et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Eng. J. Med. 383 120–128. 10.1056/nejmoa2015432
    1. Ahmed H., Patel K., Greenwood D., Halpin S., Lewthwaite P., Salawu A., et al. (2020). Long-term clinical outcomes in survivors of coronavirus outbreaks after hospitalization or icu admission: a systematic review and meta-analysis of follow-up studies. medRxiv [preprint] 10.1101/2020.04.16.20067975
    1. Arnold D. T., Hamilton F. W., Milne A., Morley A., Viner J., Attwood M., et al. (2020). Patient outcomes after hospitalisation with COVID-19 and implications for follow-up; results from a prospective UK cohort. medRxiv [preprint] 10.1101/2020.08.12.20173526
    1. Beitler J. R., Malhotra A., Thompson B. T. (2016). Ventilator-induced lung injury. Clin. Chest Med. 37 633–646. 10.1016/j.ccm.2016.07.004
    1. Brat K., Stastna N., Merta Z., Olson L. J., Johnson B. D., Cundrle I., Jr. (2019). Cardiopulmonary exercise testing for identification of patients with hyperventilation syndrome. PLoS One 14:e0215997. 10.1371/journal.pone.0215997
    1. Carfi A., Bernabei R., Landi F., Gemelli Against C.-P.-A. C. S. G. (2020). Persistent symptoms in patients after acute COVID-19. JAMA 324 603–605. 10.1001/jama.2020.12603
    1. Carsana L., Sonzogni A., Nasr A., Rossi R. S., Pellegrinelli A., Zerbi P., et al. (2020). Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. 20 1135–1140. 10.1016/s1473-3099(20)30434-5
    1. Center J. H. C. R. (2020). COVID-19 Map - Johns Hopkins Coronavirus Resource Center. [online]. Available online at: (accessed November 26, 2020).
    1. Chieffo A., Stefanini G. G., Price S., Barbato E., Tarantini G., Karam N., et al. (2020). EAPCI position statement on invasive management of acute coronary syndromes during the COVID-19 pandemic. Eur. Heart J. 41 1839–1851. 10.1093/eurheartj/ehaa381
    1. Clavario P., De Marzo V., Lotti R., Barbara C., Porcile A., Russo C., et al. (2020). Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. medRxiv [preprint] 10.1101/2020.11.15.20231985
    1. Clerkin K. J., Fried J. A., Raikhelkar J., Sayer G., Griffin J. M., Masoumi A., et al. (2020). COVID-19 and cardiovascular disease. Circulation 141 1648–1655. 10.1161/CIRCULATIONAHA.120.046941
    1. Davido B., Seang S., Tubiana R., de Truchis P. (2020). Post-COVID-19 chronic symptoms: a postinfectious entity? Clin. Microbiol. Infect. 26 1448–1449. 10.1016/j.cmi.2020.07.028
    1. Desai S. R., Wells A. U., Rubens M. B., Evans T. W., Hansell D. M. (1999). Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology 210 29–35. 10.1148/radiology.210.1.r99ja2629
    1. Driggin E., Madhavan M. V., Bikdeli B., Chuich T., Laracy J., Biondi-Zoccai G., et al. (2020). Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 Pandemic. J. Am. Coll. Cardiol. 75 2352–2371. 10.1016/j.jacc.2020.03.031
    1. Evans P. C., Rainger G., Mason J. C., Guzik T. J., Osto E., Stamataki Z., et al. (eds) (2020). Endothelial dysfunction in COVID-19: a position paper of the ESC working group for atherosclerosis and vascular biology, and the esc council of basic cardiovascular science. Cardiovasc. Res. 116 2177–2184. 10.1093/cvr/cvaa230
    1. Frija-Masson J., Debray M. P., Gilbert M., Lescure F. X., Travert F., Borie R., et al. (2020). Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 56:2001754. 10.1183/13993003.01754-2020
    1. Gardner W. N. (1994). “Hyperventilation: diagnosis and therapy,” in Behavioral and Psychological Approaches to Breathing Disorders, eds Beverly H., Timmons R. L. (New York: Springer Science + Business Media, LLC; ), 99–111. 10.1007/978-1-4757-9383-3_7
    1. Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H., et al. (2020). Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81 e4–e6. 10.1016/j.jinf.2020.08.029
    1. Goërtz Y. M. J., Van Herck M., Delbressine J. M., Vaes A. W., Meys R., Machado F. V. C. (2020). Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 6 00542–2020. 10.1183/23120541.00542-2020
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet 395 497–506. 10.1016/S0140-6736(20)30183-5
    1. Huang L., Zhao P., Tang D., Zhu T., Han R., Zhan C., et al. (2020). Cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc. Imaging 13 2330–2339. 10.1016/j.jcmg.2020.05.004
    1. Huang Y., Tan C., Wu J., Chen M., Wang Z., Luo L., et al. (2020). Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 21:163. 10.1186/s12931-020-01429-6
    1. Hui D. S., Joynt G. M., Wong K. T., Gomersall C. D., Li T. S., Antonio G., et al. (2005). Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 60 401–409. 10.1136/thx.2004.030205
    1. Jack S., Rossiter H. B., Warburton C. J., Whipp B. J. (2003). Behavioral influences and physiological indices of ventilatory control in subjects with idiopathic hyperventilation. Behav. Modif. 27 637–652. 10.1177/0145445503256318
    1. Laffey J. G., Kavanagh B. P. (2002). Hypocapnia. N. Engl. J. Med. 347 43–53. 10.1056/NEJMra012457
    1. Li T. S., Gomersall C. D., Joynt G. M., Chan D. P., Leung P., Hui D. S. (2006). Long-term outcome of acute respiratory distress syndrome caused by severe acute respiratory syndrome (SARS): an observational study. Crit. Care Med. 8 302–308.
    1. Lum L. C. (1975). Hyperventilation: the tip and the iceberg. J. Psychosom. Res. 19 375–383. 10.1016/0022-3999(75)90017-3
    1. Mart M. F., Ware L. B. (2020). The long-lasting effects of the acute respiratory distress syndrome. Exp. Rev. Respir. Med. 14 577–586. 10.1080/17476348.2020.1743182
    1. Miglis M. G., Goodman B. P., Chemali K. R., Stiles L. (2020a). Re: ‘post-COVID-19 chronic symptoms’ by Davido et al. Clin. Microbiol. Infect. 10.1016/j.cmi.2020.08.028 [Epub ahead of print].
    1. Miglis M. G., Prieto T., Shaik R., Muppidi S., Sinn D. I., Jaradeh S. (2020b). A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 10.1007/s10286-020-00727-9 [Epub ahead of print].
    1. Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., et al. (2020). Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 55:2001217. 10.1183/13993003.01217-2020
    1. Ngai J. C., Ko F. W., Ng S. S., To K. W., Tong M., Hui D. S. (2010). The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology 15 543–550. 10.1111/j.1440-1843.2010.01720.x
    1. O’Keefe J. B., Tong E. J., Datoo O., Keefe G. A., Tong D. C. (2020). Predictors of disease duration and symptom course of outpatients with acute COVID-19: a retrospective cohort study. medRxiv [preprint] 10.1101/2020.06.05.20123471
    1. Ong K. C., Ng A. W., Lee L. S., Kaw G., Kwek S. K., Leow M. K., et al. (2004). Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome. Eur. Respir. J. 24 436–442. 10.1183/09031936.04.00007104
    1. Park W. B., Jun K. I., Kim G., Choi J. P., Rhee J. Y., Cheon S., et al. (2018). Correlation between pneumonia severity and pulmonary complications in middle east respiratory syndrome. J. Korean Med. Sci. 33:e169. 10.3346/jkms.2018.33.e169
    1. Pascarella G., Strumia A., Piliego C., Bruno F., Del Buono R., Costa F., et al. (2020). COVID-19 diagnosis and management: a comprehensive review. J. Intern. Med. 288 192–206. 10.1111/joim.13091
    1. Puntmann V. O., Carerj M. L., Wieters I., Fahim M., Arendt C., Hoffmann J., et al. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5 1265–1273. 10.1001/jamacardio.2020.3557
    1. Raman B., Cassar M. P., Tunnicliffe E. M., Filippini N., Griffanti L., Alfaro-Almagro F., et al. (2020). Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. medRxiv [preprint] 10.1101/2020.10.15.20205054
    1. Rodriguez-Morales A. J., Cardona-Ospina J. A., Gutierrez-Ocampo E., Villamizar-Pena R., Holguin-Rivera Y., Escalera-Antezana J. P., et al. (2020). Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med. Infect. Dis. 34:101623. 10.1016/j.tmaid.2020.101623
    1. Schaller T., Hirschbuhl K., Burkhardt K., Braun G., Trepel M., Markl B., et al. (2020). Postmortem examination of patients with COVID-19. JAMA 323 2518–2520. 10.1001/jama.2020.8907
    1. Simpson R., Robinson L. (2020). Rehabilitation after critical illness in people with COVID-19 infection. Am. J. Phys. Med. Rehabil. 99 470–474. 10.1097/PHM.0000000000001480
    1. Tenforde M. W., Kim S. S., Lindsell C. J., Billig Rose E., Shapiro N. I., Files D. C., et al. (2020). Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - united states, march-june. MMWR Morb. Mortal. Wkly. Rep. 69 993–998. 10.15585/mmwr.mm6930e1
    1. van Dixhoorn J., Duivenvoorden H. J. (1985). Efficacy of nijmegen questionnaire in recognition of the hyperventilation syndrome. J. Psychosom. Res. 29 199–206. 10.1016/0022-3999(85)90042-x
    1. van Gassel R. J. J., Bels J. L. M., Raafs A., van Bussel B. C. T., van de Poll M. C. G., Simons S. O., et al. (2020). High Prevalence of Pulmonary Sequelae at 3 Months After Hospital Discharge in Mechanically Ventilated COVID-19 Survivors. Am. J. Respir. Crit. Care Med. 10.1164/rccm.202010-3823LE Online ahead of print.
    1. Varga Z., Flammer A. J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395 1417–1418. 10.1016/s0140-6736(20)30937-5
    1. Weerahandi H., Hochman K. A., Simon E., Blaum C., Chodosh J., Duan E., et al. (2020). Post-discharge health status and symptoms in patients with severe COVID-19. medRxiv [preprint] 10.1101/2020.08.11.20172742
    1. Wong A. W., Shah A. S., Johnston J. C., Carlsten C., Ryerson C. J. (2020). Patient-reported outcome measures after COVID-19: a prospective cohort study. Eur. Respir. J. 56:2003276. 10.1183/13993003.03276-2020
    1. Zhang P., Li J., Liu H., Han N., Ju J., Kou Y., et al. (2020). Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res. 8:8. 10.1038/s41413-020-0084-5
    1. Zhao Y. M., Shang Y. M., Song W. B., Li Q. Q., Xie H., Xu Q. F., et al. (2020). Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. E Clin. Med. 25:100463. 10.1016/j.eclinm.2020.100463
    1. Zhou C., Wu L., Ni F., Ji W., Wu J., Zhang H. (2014). Critical illness polyneuropathy and myopathy: a systematic review. Neural Regen. Res. 9 101–110. 10.4103/1673-5374.125337

Source: PubMed

3
Tilaa