Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

Sarah L Stenton, Natalia L Sheremet, Claudia B Catarino, Natalia A Andreeva, Zahra Assouline, Piero Barboni, Ortal Barel, Riccardo Berutti, Igor Bychkov, Leonardo Caporali, Mariantonietta Capristo, Michele Carbonelli, Maria L Cascavilla, Peter Charbel Issa, Peter Freisinger, Sylvie Gerber, Daniele Ghezzi, Elisabeth Graf, Juliana Heidler, Maja Hempel, Elise Heon, Yulya S Itkis, Elisheva Javasky, Josseline Kaplan, Robert Kopajtich, Cornelia Kornblum, Reka Kovacs-Nagy, Tatiana D Krylova, Wolfram S Kunz, Chiara La Morgia, Costanza Lamperti, Christina Ludwig, Pedro F Malacarne, Alessandra Maresca, Johannes A Mayr, Jana Meisterknecht, Tatiana A Nevinitsyna, Flavia Palombo, Ben Pode-Shakked, Maria S Shmelkova, Tim M Strom, Francesca Tagliavini, Michal Tzadok, Amelie T van der Ven, Catherine Vignal-Clermont, Matias Wagner, Ekaterina Y Zakharova, Nino V Zhorzholadze, Jean-Michel Rozet, Valerio Carelli, Polina G Tsygankova, Thomas Klopstock, Ilka Wittig, Holger Prokisch, Sarah L Stenton, Natalia L Sheremet, Claudia B Catarino, Natalia A Andreeva, Zahra Assouline, Piero Barboni, Ortal Barel, Riccardo Berutti, Igor Bychkov, Leonardo Caporali, Mariantonietta Capristo, Michele Carbonelli, Maria L Cascavilla, Peter Charbel Issa, Peter Freisinger, Sylvie Gerber, Daniele Ghezzi, Elisabeth Graf, Juliana Heidler, Maja Hempel, Elise Heon, Yulya S Itkis, Elisheva Javasky, Josseline Kaplan, Robert Kopajtich, Cornelia Kornblum, Reka Kovacs-Nagy, Tatiana D Krylova, Wolfram S Kunz, Chiara La Morgia, Costanza Lamperti, Christina Ludwig, Pedro F Malacarne, Alessandra Maresca, Johannes A Mayr, Jana Meisterknecht, Tatiana A Nevinitsyna, Flavia Palombo, Ben Pode-Shakked, Maria S Shmelkova, Tim M Strom, Francesca Tagliavini, Michal Tzadok, Amelie T van der Ven, Catherine Vignal-Clermont, Matias Wagner, Ekaterina Y Zakharova, Nino V Zhorzholadze, Jean-Michel Rozet, Valerio Carelli, Polina G Tsygankova, Thomas Klopstock, Ilka Wittig, Holger Prokisch

Abstract

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.

Keywords: Genetic diseases; Genetics; Neuroscience.

Conflict of interest statement

Conflict of interest: CBC, CK, PB, CLM, TK, and VC have received research support, speaker honoraria, consulting fees, and travel reimbursement from Santhera Pharmaceuticals and GenSight Biologics.

Figures

Figure 1. Identification of pathogenic DNAJC30 mutations…
Figure 1. Identification of pathogenic DNAJC30 mutations in LHON patients in association with a complex I defect.
(A) Pedigrees from 29 families. The genotype is denoted by (–/–) for homozygous variant carriers, (+/–) for heterozygous variant carriers, and (+/+) for carriers of 2 wild-type alleles. Individuals with a central dot are homozygous carriers (–/–) who did not express the disease phenotype at their current age, stated beneath. (B) Schematic of the sex-dependent incomplete penetrance in both maternally inherited LHON (mtLHON) and recessive LHON (arLHON), demonstrating a clear male predominance in symptomatic carriers of disease-causing variants. (C) Mitochondrial complex I–dependent (CI-dependent) respiration rate measurement in control (n = 30, technical replicates) and arLHON (n = 28, technical replicates) fibroblast cell lines, demonstrating a mild respiratory defect rescued by reexpression of naive DNAJC30 (arLHON-rescue, n = 36, technical replicates). The defect in CI-dependent respiration rate is recapitulated in the DNAJC30-KO (n = 25, technical replicates) in comparison with control (n = 43, technical replicates) HEK293 cell lines. Data are normalized to the respective control cell line and depicted by the mean ± SD; 2-sided Student’s t test, P values corrected for multiple comparisons to the control (Dunnett’s test). ****P ≤ 0.0001. NS, not significant.
Figure 2. LHON associated with DNAJC30 mutations…
Figure 2. LHON associated with DNAJC30 mutations presents as a phenocopy of maternally inherited LHON.
(A) The pathognomonic triad of ophthalmological features in mtLHON is recapitulated in arLHON. Presented here is an illustrative example from 1 arLHON patient. Top panel: Optic nerve head picture and fluorescein angiography in the acute stage of the disease displaying microangiopathy without leakage, fiber swelling, and initial temporal pallor of the optic disc. Bottom panel: The retinal nerve fiber layer (RNFL) thickness analysis and deviation map showing the progressive thinning of fibers from the subacute stage (right eye [OD] at 2 months and left eye [OS] at 3 months after visual loss) to the chronic stage (3 years). The 30° Humphrey visual field shows progressive enlargement of the central scotoma in the subacute stage (from 2 to 4 months in OD and from 3 to 5 months in OS) and fenestration of the scotoma after 3 years (10° Humphrey visual field) associated with recovery of visual acuity (VA, expressed in decimal units). m, months; y, years. RNFL thickness (middle) is displayed as a function of the quadrant in the deviation map: temporal (TEMP), superior (SUP), nasal (NAS), and inferior (INF). (B) Age of onset (years) in mtLHON (n = 104) (28) and arLHON (n = 31). Data presented as mean ± SD. ****P ≤ 0.0001 by 2-sided Student’s t test. (C) Spontaneous and idebenone-treated rate of clinically significant recovery of VA, defined as improvement in logMAR VA of ≥0.2, in mtLHON (4, 5, 6) in comparison with arLHON, in which treated recovery rates were significantly higher in arLHON (mtLHON 43.6%, arLHON 80.6%, P < 0.001, Fisher’s exact test).
Figure 3. DNAJC30 mutations result in impaired…
Figure 3. DNAJC30 mutations result in impaired repair of specific subunits of mitochondrial complex I.
(A) The structure of mitochondrial complex I (CI) (30), depicted by module and respective protein. (B) Mitochondrial CI structure colored by the mean degree of subunit turnover in 12 hours in control fibroblast cell lines (n = 7) and patient fibroblast cell lines (n = 6) depicted as a percentage. The mean data are provided in Supplemental Table 15 and the individual experiments are depicted in Supplemental Tables 11–14. (C) The DNAJC30 interacting partners in CI according to the BioPlex database highlighted on the CI structure. The interaction partners in the N-module (NDUFV3, NDUFS4, NDUFS6, and NDUFA7) account for 4 of the 5 CIHIGH subunits, defined as subunits with >25% turnover in 12 hours in the control fibroblast cell lines. (D) Turnover measurement of CIHIGH subunits (n = 5) and (E) CIMOD subunits (n = 5) in 12 hours in control (n = 7), arLHON (n = 6), and mtLHON patient (n = 3, m.3460G>A in MT-ND1, m.11778G>A in MT-ND4, and m.14484T>C in MT-ND6) fibroblast cell lines, and control (n = 1) and DNAJC30-KO (n = 1) HEK293 cell lines. arLHON patients demonstrate a defect in CIHIGH (control mean 33.6% ± 11.2% SD, patient mean 16.8% ± 5.5% SD) and CIMOD (control mean 18.3% ± 5.7% SD, patient mean 12.5% ± 3.9% SD) subunits. The defective turnover of CIHIGH subunits is shown to be specific to arLHON (CIHIGH subunits, control mean 33.6% ± 11.2% SD, mtLHON mean 33.7% ± 13.7% SD). The DNAJC30-KO HEK293 cell line demonstrates a defect in CIHIGH (control mean 48.7% ± 8.3% SD, KO mean 31.0% ± 11.6% SD) and CIMOD (control mean 36.6% ± 8.9% SD, KO mean 24.5% ± 7.5% SD) subunits. Data depicted as the mean ± SD; 2-sided Student’s t test, P values corrected for multiple comparisons to the control (Dunnett’s test). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. NS, not significant. A complete summary of the data is provided in Supplemental Table 10 and the experiment is depicted in Supplemental Tables 10–15 and 17.
Figure 4. Schematic representation of the proposed…
Figure 4. Schematic representation of the proposed role of DNAJC30 in complex I repair.
(A) In normal physiological conditions, DNAJC30 interacts with specific complex I (CI) N-module proteins (CIHIGH), facilitating their disassembly and subsequent degradation. In the setting of highly functional CI, these proteins are newly synthesized and replaced without degradation of further subunits. In the case of oxidative damage to the CI N-module, upon disassembly of the CIHIGH subunits by DNAJC30 the protease CLPXP may access and remove the damaged CIMOD subunits (20, 21). Along with the CIHIGH subunits, these subunits are subsequently resynthesized and replaced, negating the need for complete degradation and synthesis of CI at high energetic cost. (B) Compared with control, in the presence of DNAJC30 mutations turnover of the N-module subunits is decreased, impairing the CI repair mechanism and leading to the accumulation of CI with reduced function.

References

    1. Von Graefe A. Exceptionelles verrhalten des gesichtsfeldes bei pigmentenartung der netzhaut. Albrecht Von Graefes Arch Ophthalmol. 1858;4(6):250–253.
    1. Leber TH. Ueber hereditäre und congenital-angelegte Sehnervenleiden. Albrecht Von Graefes Arch Ophthalmol. 1871;17(2):249–291. doi: 10.1007/BF01694557.
    1. Yu-Wai-Man P, et al. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789–806. doi: 10.1007/s00401-016-1625-2.
    1. Catarino CB, et al. Real-world clinical experience with idebenone in the treatment of leber hereditary optic neuropathy. J Neuroophthalmol. 2020;40(4):558–565. doi: 10.1097/WNO.0000000000001023.
    1. Carelli V, et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain. 2011;134(9):e188–e188. doi: 10.1093/brain/awr180.
    1. Mashima Y, et al. Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? J Neuroophthalmol. 2000;20(3):166–170. doi: 10.1097/00041327-200020030-00006.
    1. Erickson RP. Leber’s optic atrophy, a possible example of maternal inheritance. Am J Hum Genet. 1972;24(3):348–349.
    1. Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–1430. doi: 10.1126/science.3201231.
    1. Howell N, et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am J Hum Genet. 1991;49(5):939–950.
    1. Mackey DA, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet. 1996;59(2):481–485.
    1. Achilli A, et al. Rare primary mitochondrial DNA mutations and probable synergistic variants in Leber’s hereditary optic neuropathy. PLoS One. 2012;7(8):e42242. doi: 10.1371/journal.pone.0042242.
    1. Blakely EL, et al. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation. Eur J Hum Genet. 2005;13(5):623–627. doi: 10.1038/sj.ejhg.5201363.
    1. Pulkes T, et al. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol. 1999;46(6):916–919. doi: 10.1002/1531-8249(199912)46:6<916::AID-ANA16>;2-R.
    1. Spruijt L, et al. A MELAS-associated ND1 mutation causing Leber hereditary optic neuropathy and spastic dystonia. Arch Neurol. 2007;64(6):890–893. doi: 10.1001/archneur.64.6.890.
    1. Fruhman G, et al. Atypical presentation of Leigh syndrome associated with a Leber hereditary optic neuropathy primary mitochondrial DNA mutation. Mol Genet Metab. 2011;103(2):153–160. doi: 10.1016/j.ymgme.2011.02.014.
    1. Miyaue N, et al. Repetitive brainstem lesions in mitochondrial DNA 11778G>A mutation of Leber hereditary optic neuropathy. eNeurologicalSci. 2019;14:74–76. doi: 10.1016/j.ensci.2019.01.002.
    1. Brandt U. Energy converting NADH: quinone oxidoreductase (complex I) Annu Rev Biochem. 2006;75:69–92. doi: 10.1146/annurev.biochem.75.103004.142539.
    1. Hirst J. Mitochondrial complex I. Annu Rev Biochem. 2013;82:551–575. doi: 10.1146/annurev-biochem-070511-103700.
    1. Milenkovic D, et al. The enigma of the respiratory chain supercomplex. Cell Metab. 2017;25(4):765–776. doi: 10.1016/j.cmet.2017.03.009.
    1. Szczepanowska K, et al. A salvage pathway maintains highly functional respiratory complex I. Nat Commun. 2020;11(1):1643. doi: 10.1038/s41467-020-15467-7.
    1. Bogenhagen DF, Haley JD. Pulse-chase SILAC–based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes. J Biol Chem. 2020;295(9):2544–2554. doi: 10.1074/jbc.RA119.011791.
    1. Nikoskelainen EK, et al. Ophthalmologic findings in Leber hereditary optic neuropathy, with special reference to mtDNA mutations. Ophthalmology. 1996;103(3):504–514. doi: 10.1016/S0161-6420(96)30665-9.
    1. Hudson G, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA–haplogroup background. Am J Hum Genet. 2007;81(2):228–233. doi: 10.1086/519394.
    1. Pala M, et al. Mitochondrial DNA signals of late glacial recolonization of Europe from near eastern refugia. Am J Hum Genet. 2012;90(5):915–924. doi: 10.1016/j.ajhg.2012.04.003.
    1. Man PYW, et al. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet. 2003;72(2):333–339. doi: 10.1086/346066.
    1. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–592. doi: 10.1038/nrm2941.
    1. Carelli V, et al. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Ret Eye Res. 2005;23(1):53–89.
    1. Rosenberg T, et al. Prevalence and genetics of Leber hereditary optic neuropathy in the Danish population. Invest Ophthalmol Vis Sci. 2016;57(3):1370–1375. doi: 10.1167/iovs.15-18306.
    1. Klopstock T, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(9):2677–2686. doi: 10.1093/brain/awr170.
    1. Agip ANA, et al. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat Rev Mol Cell Biol. 2018;25(7):548–556.
    1. Guerrero-Castillo S, et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 2017;25(1):128–139. doi: 10.1016/j.cmet.2016.09.002.
    1. Huttlin EL, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545(7655):505–509. doi: 10.1038/nature22366.
    1. Huttlin EL, et al. The BioPlex Network: a systematic exploration of the human interactome. Cell. 2015;162(2):425–440. doi: 10.1016/j.cell.2015.06.043.
    1. Cheng Y, Perocchi F. ProtPhylo: identification of protein–phenotype and protein–protein functional associations via phylogenetic profiling. Nucleic Acids Res. 2015;43(W1):W160–W168. doi: 10.1093/nar/gkv455.
    1. Dimitriadis K, et al. Leber’s hereditary optic neuropathy with late disease onset: clinical and molecular characteristics of 20 patients. Orphanet J Rare Dis. 2014;9(1):158. doi: 10.1186/s13023-014-0158-9.
    1. Yu-Wai-Man P, et al. Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114. doi: 10.1016/j.preteyeres.2010.11.002.
    1. Gerber S, et al. Compound heterozygosity for severe and hypomorphic NDUFS2 mutations cause non-syndromic LHON-like optic neuropathy. J Med Genet. 2017;54(5):346–356. doi: 10.1136/jmedgenet-2016-104212.
    1. Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–169.
    1. Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim Biophys Acta. 2016;1857(7):872–883.
    1. Tebbenkamp AT, et al. The 7q11.23 protein DNAJC30 interacts with ATP synthase and links mitochondria to brain development. Cell. 2018;175(4):1088–1104. doi: 10.1016/j.cell.2018.09.014.
    1. Distelmaier F, et al. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain. 2009;132(4):833–842.
    1. Janssen RJ, et al. Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis. 2006;29(4):499–515. doi: 10.1007/s10545-006-0362-4.
    1. Fiedorczuk K, Sazanov LA. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol. 2018;28(10):835–867. doi: 10.1016/j.tcb.2018.06.006.
    1. Urra FA, et al. The mitochondrial complex(I)ty of cancer. Front Oncol. 2017;7:118.
    1. Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle. 2011;10(10):1528–1532. doi: 10.4161/cc.10.10.15496.
    1. Wittig I, et al. Blue native PAGE. Nat Protoc. 2006;1(1):418–428. doi: 10.1038/nprot.2006.62.
    1. Kremer LS, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8(1):1–11. doi: 10.1038/s41467-016-0009-6.
    1. Del Dotto V, et al. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. J Clin Invest. 2009;130(1):108–125. doi: 10.1172/JCI128514.
    1. Kremer LS, Prokisch H. Identification of disease-causing mutations by functional complementation of patient-derived fibroblast cell lines. Methods Mol Biol. 2017;1567:391–406. doi: 10.1007/978-1-4939-6824-4_24.
    1. Perez-Riverol, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–D450. doi: 10.1093/nar/gky1106.

Source: PubMed

3
Tilaa