Human uterine leiomyoma-derived fibroblasts stimulate uterine leiomyoma cell proliferation and collagen type I production, and activate RTKs and TGF beta receptor signaling in coculture

Alicia B Moore, Linda Yu, Carol D Swartz, Xaiolin Zheng, Lu Wang, Lysandra Castro, Grace E Kissling, David K Walmer, Stanley J Robboy, Darlene Dixon, Alicia B Moore, Linda Yu, Carol D Swartz, Xaiolin Zheng, Lu Wang, Lysandra Castro, Grace E Kissling, David K Walmer, Stanley J Robboy, Darlene Dixon

Abstract

Background: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system.

Results: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins.

Conclusions: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.

Figures

Figure 1
Figure 1
Desmin and Vimentin. (A) Uterine leiomyoma-derived fibroblasts (FB) stained negatively for desmin (center) and positively for vimentin (upper left). Inset lower right: Negative Control (NC) = Normal Mouse Serum. (B) UtLM cells and UtSMC (C) stained positively for desmin (center) and vimentin (upper left). Inset lower right: NC = Normal Mouse Serum. OTR. (D) Leiomyoma-derived FB was negative for the OTR. Inset upper left: NC = Normal Goat Serum. Positive staining of the OTR was observed in both UtLM cells (E) and UtSMC (F). Inset upper left: NC = Normal Goat Serum.
Figure 2
Figure 2
Assessment of cell proliferation based on cell counts and PCNA labeling. (A) Cell proliferation. There was a significant (p = 0.004) increase in the number of UtLM cells cocultured with fibroblasts (UtLM/FB) compared to UtLM cells cultured alone. There was no significant difference observed between UtSMC alone and UtSMC cocultured with FB (B) PCNA labeling. The percent PCNA labeling was significantly (p = 0.04) higher in UtLM/FB compared to UtLM cells cultured alone; however, there was no significant difference for UtSMC at both conditions. (C) PCNA immunoexpression in UtLM cells and UtLM/FB. PCNA was expressed in both cocultured and non-cocultured UtLM cells, as well as UtSMC, as indicated by brown nuclear staining. There was a significant increase in PCNA expression in the UtLM/FB compared to UtLM cells cultured alone, but not for UtSMC under similar conditions. All error bars represent SEM.
Figure 3
Figure 3
ECM Proteins. (A) Western blots. Collagen-I and IGF-BP-3 protein secretion in media of UtLM cells or UtSCM cultured in the presence (UtLM/FB or UtSMC/FB) or absence of FB. (B) Densitometry. Collagen I was significantly (p = 0.02) increased in the media of UtLM/FB cells compared to UtLM cells cultured alone. There was no difference between UtSMC versus UtSMC cocultured with FB. There was a significant (p = 0.02) increase in the expression of IGF-BP-3 in the cocultured UtLM cells compared to UtLM cells or FB cultured alone. Furthermore, IGF-BP-3 levels were also significantly higher in the cocultured UtSMC than UtSMC and FB cultured alone, but the level was minimal. There was a limited expression of IGF-BP-4 compared to IGF-BP-3 for both UtLM cells and UtSMC under cocultured or single cultured conditions. However, there was a significant (p = 0.02) increase in IGF-BP-4 expression in the cocultured UtSMC compared to UtSMC cultured alone. All error bars represent SEM.
Figure 4
Figure 4
Secretion of TGF-β1, VEGF and EGF in the media. There was a significant increase in the concentration of (A) TGF-β1 (p = 0.01), (B) VEGF (p = 0.02) and (C) EGF (p = 0.004) in the media of UtLM/FB compared to UtLM cells or fibroblasts (FB) cultured alone by ELISA. All error bars represent SEM.
Figure 5
Figure 5
Secretion of FGF-2, PDGF-A and -B, and TGF-β3 in the media. (A) Western blots of growth factor proteins. (B) Densitometric intensity of growth factor proteins. There was a statistically significant (p = 0.02) increase in the secretion of FGF-2, PDGF-A and -B and TGF-β3 in the media of UtLM cells cocultured with fibroblasts (UtLM/FB) versus UtLM cells or FB cultured alone. All error bars represent SEM.
Figure 6
Figure 6
Expression of phosphorylated (p)RTKs. (A) pRTK array. The array detected activated RTKs for GFs under both culturing conditions (B) Densitometry. There was an overall increase in the expression of 5 pRTKs in the UtLM/FB compared to UtLM cells cultured alone. Significant (p = 0.02) increases in the phosphorylated receptors, ErbB4 and PDGFα/β, were found in the UtLM/FB compared to UtLM cells cultured alone. All error bars represent SEM.
Figure 7
Figure 7
Detection of phosphorylated (p)-MAPK44/42. (A) Western blots. There was a significant increase in the expression of p-MAPK44/42 in the UtLM/FB compared to cultures of UtLM cells or FB alone at 24 h, 48h and day 7. (B) Densitometry. There was a significant increase in the expression of p-MAPK44/42 in cocultured UtLM cells compared to non-cocultured UtLM cells and FB at 24 h (p < 0.0001), 48 h (p = 0.05) and day 7 (p = 0.05). There were no differences observed between the culturing conditions for total (t)-MAPK44/42 expression. All error bars represent SEM.
Figure 8
Figure 8
Detection of activated TGF-βRI and downstream proteins, p-Smad-2 and -3 at 48 h. (A) Immunoprecipitation of TGF-βRI, blotted with anti-phospho-serine. There was increased expression of phospho-serine in immunoprecipitated TGF-βRI in cocultures of UtLM/FB compared to cultures of FB or UtLM cells alone. There were no significant differences in total (t)-TGF-βRI expression between the culturing conditions. (b) Western blots of p-Smad-2 and p-Smad-3 and t-Smad-2 and t-Smad-3. Densitometric analyses showed a significant increase in the expression of phospho-Smad-2 (p = 0.001) and phosho-Smad-3 (p = 0.05) in UtLM/FB compared to UtLM cells or FB cultured alone. There was no significant difference in t-Smad-2 expression between UtLM/FB and UtLM cells cultured alone. All error bars represent SEM.

References

    1. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22:571–588. doi: 10.1016/j.bpobgyn.2008.04.002.
    1. Marsh EE, Bulun SE. Steroid hormones and leiomyomas. Obstet Gynecol Clin North Am. 2006;33:59–67. doi: 10.1016/j.ogc.2005.12.001.
    1. Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab. 1994;79:900–906. doi: 10.1210/jc.79.3.900.
    1. Di Lieto A, De Falco M, Mansueto G, De Rosa G, Pollio F, Staibano S. Preoperative administration of GnRH-a plus tibolone to premenopausal women with uterine fibroids: Evaluation of the clinical response, the immunohistochemical expression of PDGF, bFGF and VEGF and the vascular pattern. Steroids. 2005;70:95–102. doi: 10.1016/j.steroids.2004.10.008.
    1. Luo X, Chegini N. The expression and potential regulatory function of microRNAs in the pathogenesis of leiomyoma. Semin Reprod Med. 2008;26:500–514. doi: 10.1055/s-0028-1096130.
    1. Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209:9–16. doi: 10.1016/j.mce.2003.08.007.
    1. Mangrulkar RS, Ono M, Ishikawa M, Takashima S, Klagsbrun M, Nowak RA. Isolation and characterization of heparin-binding growth factors in human leiomyomas and normal myometrium. Biol Reprod. 1995;53:636–646. doi: 10.1095/biolreprod53.3.636.
    1. Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 2004;15:275–286. doi: 10.1016/j.cytogfr.2004.03.002.
    1. De Wever O, Mareel M. Role of myofibroblasts at the invasion front. Biol Chem. 2002;383:55–67. doi: 10.1515/BC.2002.006.
    1. Mbeunkui F, Johann DJ Jr. Cancer and the tumor microenvironment: A review of an essential relationship. Cancer Chemother Pharmacol. 2009;63:571–582. doi: 10.1007/s00280-008-0881-9.
    1. Lee KH, Khan-Dawood FS, Dawood MY. Oxytocin receptor and its messenger ribonucleic acid in human leiomyoma and myometrium. Am J Obstet Gynecol. 1998;179:620–627. doi: 10.1016/S0002-9378(98)70054-7.
    1. Sendemir A, Sendemir E, Kosmehl H, Jirikowski GF. Expression of sex hormone-binding globulin, oxytocin receptor, caveolin-1 and p21 in leiomyoma. Gynecol Endocrinol. 2008;24:105–112. doi: 10.1080/09513590701690274.
    1. Loddenkemper C, Mechsner S, Foss HD, Dallenbach FE, Anagnostopoulos I, Ebert AD, Stein H. Use of oxytocin receptor expression in distinguishing between uterine smooth muscle tumors and endometrial stromal sarcoma. Am J Surg Pathol. 2003;27:1458–1462. doi: 10.1097/00000478-200311000-00009.
    1. Yu L, Saile K, Swartz CD, He H, Zheng X, Kissling GE, Di X, Lucas S, Robboy SJ, Dixon D. Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol Med. 2008;14:264–275. doi: 10.2119/.
    1. Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: A review. Environ Health Perspect. 2003;111:1037–1054.
    1. Dixon D, He H, Haseman JK. Immunohistochemical localization of growth factors and their receptors in uterine leiomyomas and matched myometrium. Environ Health Perspect. 2000;108(Suppl 5):795–802. doi: 10.2307/3454309.
    1. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195:415–420. doi: 10.1016/j.ajog.2005.12.059.
    1. Berto AG, Sampaio LO, Franco CR, Cesar RM Jr, Michelacci YM. A comparative analysis of structure and spatial distribution of decorin in human leiomyoma and normal myometrium. Biochim Biophys Acta. 2003;1619:98–112.
    1. Lefebvre MF, Guillot C, Crepin M, Saez S. Influence of tumor derived fibroblasts and 1,25-dihydroxyvitamin D3 on growth of breast cancer cell lines. Breast Cancer Res Treat. 1995;33:189–197. doi: 10.1007/BF00665943.
    1. Micke P, Ostman A. Exploring the tumour environment: Cancer-associated fibroblasts as targets in cancer therapy. Expert Opin Ther Targets. 2005;9:1217–1233. doi: 10.1517/14728222.9.6.1217.
    1. Hofland LJ, van der Burg B, van Eijck CH, Sprij DM, van Koetsveld PM, Lamberts SW. Role of tumor-derived fibroblasts in the growth of primary cultures of human breast-cancer cells: Effects of epidermal growth factor and the somatostatin analogue octreotide. Int J Cancer. 1995;60:93–99. doi: 10.1002/ijc.2910600114.
    1. O'Hayre M, Salanga CL, Handel TM, Allen SJ. Chemokines and cancer: Migration, intracellular and intercellular communication in the microenvironment. Biochem J. 2008;409:635–649. doi: 10.1042/BJ20071493.
    1. Arici A, Sozen I. Expression, menstrual cycle-dependent activation, and bimodal mitogenic effect of transforming growth factor-beta1 in human myometrium and leiomyoma. Am J Obstet Gynecol. 2003;188:76–83. doi: 10.1067/mob.2003.118.
    1. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73:1006–1011. doi: 10.1016/S0015-0282(00)00418-0.
    1. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86:913–920. doi: 10.1210/jc.86.2.913.
    1. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78:1–12. doi: 10.1016/S0015-0282(02)03154-0.
    1. Wolanska M, Sobolewski K, Drozdzewicz M, Bankowski E. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem. 1998;189:145–152. doi: 10.1023/A:1006914301565.
    1. Wolanska M, Bankowski E. Fibroblast growth factors (FGF) in human myometrium and uterine leiomyomas in various stages of tumour growth. Biochimie. 2006;88:141–146. doi: 10.1016/j.biochi.2005.07.014.
    1. Tsai SJ, Lin SJ, Cheng YM, Chen HM, Wing LY. Expression and functional analysis of pituitary tumor transforming gene-1 [corrected] in uterine leiomyomas. J Clin Endocrinol Metab. 2005;90:3715–3723. doi: 10.1210/jc.2004-2303.
    1. Luo X, Ding L, Xu J, Chegini N. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 2005;146:1097–1118. doi: 10.1210/en.2004-1377.
    1. Ding L, Xu J, Luo X, Chegini N. Gonadotropin releasing hormone and transforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 2004;89:5549–5557. doi: 10.1210/jc.2004-0161.
    1. Barbarisi A, Petillo O, Di Lieto A, Melone MA, Margarucci S, Cannas M, Peluso G. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: Evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol. 2001;186:414–424. doi: 10.1002/1097-4652(2000)9999:999<000::AID-JCP1040>;2-E.
    1. Swartz CD, Afshari CA, Yu L, Hall KE, Dixon D. Estrogen-induced changes in IGF-I, Myb family and MAP kinase pathway genes in human uterine leiomyoma and normal uterine smooth muscle cell lines. Mol Hum Reprod. 2005;11:441–450. doi: 10.1093/molehr/gah174.
    1. Liang M, Wang H, Zhang Y, Lu S, Wang Z. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata. Cancer Biol Ther. 2006;5:28–33.
    1. Hwu YM, Li SH, Lee RK, Tsai YH, Yeh TS, Lin SY. Increased expression of platelet-derived growth factor C messenger ribonucleic acid in uterine leiomyomata. Fertil Steril. 2008;89:468–471. doi: 10.1016/j.fertnstert.2007.02.031.
    1. Noel A, Munaut C, Boulvain A, Calberg-Bacq CM, Lambert CA, Nusgens B, Lapiere CM, Foidart JM. Modulation of collagen and fibronectin synthesis in fibroblasts by normal and malignant cells. J Cell Biochem. 1992;48:150–161. doi: 10.1002/jcb.240480207.
    1. Cohen P, Rajah R, Rosenbloom J, Herrick DJ. IGFBP-3 mediates TGF-beta1-induced cell growth in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2000;278:L545–551.
    1. Xu J, Luo X, Chegini N. Differential expression, regulation, and induction of smads, transforming growth factor-beta signal transduction pathway in leiomyoma, and myometrial smooth muscle cells and alteration by gonadotropin-releasing hormone analog. J Clin Endocrinol Metab. 2003;88:1350–1361. doi: 10.1210/jc.2002-021325.
    1. Boehm KD, Daimon M, Gorodeski IG, Sheean LA, Utian WH, Ilan J. Expression of the insulin-like and platelet-derived growth factor genes in human uterine tissues. Mol Reprod Dev. 1990;27:93–101. doi: 10.1002/mrd.1080270203.
    1. van der Ven LT, Gloudemans T, Roholl PJ, van Buul-Offers SC, Bladergroen BA, Welters MJ, Sussenbach JS, den Otter W. Growth advantage of human leiomyoma cells compared to normal smooth-muscle cells due to enhanced sensitivity toward insulin-like growth factor I. Int J Cancer. 1994;59:427–434. doi: 10.1002/ijc.2910590323.
    1. van der Ven LT, Van Buul-Offers SC, Gloudemans T, Bloemen RJ, Roholl PJ, Sussenbach JS, Den Otter W. Modulation of insulin-like growth factor (IGF) action by IGF-binding proteins in normal, benign, and malignant smooth muscle tissues. J Clin Endocrinol Metab. 1996;81:3629–3635. doi: 10.1210/jc.81.10.3629.
    1. Freshney R. Culture of animal cells: A manual of basic technique. New York: Wiley-Liss Incorporated; 2000.
    1. Carney SA, Tahara H, Swartz CD, Risinger JI, He H, Moore AB, Haseman JK, Barrett JC, Dixon D. Immortalization of human uterine leiomyoma and myometrial cell lines after induction of telomerase activity: Molecular and phenotypic characteristics. Lab Invest. 2002;82:719–728.
    1. Moore AB, Castro L, Yu L, Zheng X, Di X, Sifre MI, Kissling GE, Newbold RR, Bortner CD, Dixon D. Stimulatory and inhibitory effects of genistein on human uterine leiomyoma cell proliferation are influenced by the concentration. Hum Reprod. 2007;22:2623–2631. doi: 10.1093/humrep/dem185.
    1. Conover W. Practical nonparametric statistics. New York: John Wiley & Sons Incorporated; 1999.

Source: PubMed

3
Tilaa