Comparison of morphological and functional endothelial cell changes after cataract surgery: phacoemulsification versus manual small-incision cataract surgery

Sunil Ganekal, Ashwini Nagarajappa, Sunil Ganekal, Ashwini Nagarajappa

Abstract

Purpose: To compare the morphological (cell density, coefficient of variation and standard deviation) and functional (central corneal thickness) endothelial changes after phacoemulsification versus manual small-incision cataract surgery (MSICS).

Design: Prospective randomized control study.

Materials and methods: In this prospective randomized control study, patients were randomly allocated to undergo phacoemulsification (Group 1, n = 100) or MSICS (Group 2, n = 100) using a random number Table. The patients underwent complete ophthalmic evaluation and specular microscopy preoperatively and at 1and 6 weeks postoperatively. Functional and morphological endothelial evaluation was Noncon ROBO PACHY SP-9000 specular microscope. Phacoemulsification was performed, the chop technique and MSICS, by the viscoexpression technique.

Results: The mean difference in central corneal thickness at baseline and 1 week between Group 1 and Group 2 was statistically significant (P = 0.027). However, this difference at baseline when compared to 6 week and 1 week, 6 weeks was not statistically significant (P > 0.05). The difference in mean endothelial cell density between groups at 1 week and 6 weeks was statistically significant (P = 0.016). The mean coefficient of variation and mean standard deviation between groups were not statistically significant (P > 0.05, both comparisons).

Conclusion: The central corneal thickness, coefficient of variation, and standard deviation were maintained in both groups indicating that the function and morphology of endothelial cells was not affected despite an initial reduction in endothelial cell number in MSICS. Thus, MSICS remains a safe option in the developing world.

Keywords: Cataract Surgery; Endothelail Changes; Endothelial Cell Changes; Specular Microscopy.

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Endothelial cell analysis

References

    1. Yee RW, Matsuda M, Schultz RO, Edelhauser HF. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res. 1985;4:671–8.
    1. Carlson KH, Bourne WM, McLaren JW, Brubaker RF. Variations in human corneal endothelial cell morphology and permeability to fluorescein with age. Exp Eye Res. 1988;47:27–41.
    1. Schultz RO, Glasser DB, Matsuda M, Yee RW, Edelhauser HF. Response of the corneal endothelium to cataract surgery. Arch Ophthalmol. 1986;104:1164–9.
    1. Ventura AC, Wälti R, Böhnke M. Corneal thickness and endothelial density before and after cataract surgery. Br J Ophthalmol. 2001;85:18–20.
    1. George R, Rupauliha P, Sripriya AV, Rajesh PS, Vahan PV, Praveen S. Comparison of endothelial cell loss and surgically induced astigmatism following conventional extracapsular cataract surgery, manual small-incision surgery and phacoemulsification. Ophthalmic Epidemiol. 2005;12:293–7.
    1. Muralikrishnan R, Venkatesh R, Prajna NV, Frick KD. Economic cost of cataract surgery procedures in an established eye care centre in Southern India. Ophthalmic Epidemiol. 2004;11:369–80.
    1. Bourne RR, Minassian DC, Dart JK, Rosen P, Kaushal S, Wingate N. Effect of cataract surgery on the corneal endothelium; modern phacoemulsification compared with extracapsular cataract surgery. Ophthalmology. 2004;111:679–85.
    1. Díaz-Valle D, Benítez del Castillo Sánchez JM, Castillo A, Sayagués O, Moriche M. Endothelial damage with cataract surgery techniques. J Cataract Refract Surg. 1998;24:951–5.
    1. Ruit S, Tabin G, Chang D, Bajracharya L, Kline DC, Richheimer W, et al. A prospective randomized clinical trial of phacoemulsification vs manual sutureless small-incision extracapsular cataract surgery in Nepal. Am J Ophthalmol. 2007;143:32–8.
    1. Mencucci R, Ponchietti C, Virgili G, Giansanti F, Menchini U. Corneal endothelial damage after cataract surgery: Microincision versus standard technique. J Cataract Refract Surg. 2006;32:1351–4.
    1. Gogate P, Ambardekar P, Kulkarni S, Deshpande R, Joshi S, Deshpande M. Comparison of endothelial cell loss after cataract surgery: Phacoemulsification versus manual small-incision cataract surgery: Six-week results of a randomized control trial. J Cataract Refract Surg. 2010;36:247–53.
    1. Ravalico G, Tognetto D, Baccara F, Lovisato A. Corneal endothelial protection by different viscoelastics during phacoemulsification. J Cataract Refract Surg. 1997;23:433–9.
    1. Beltrame G, Salvetat ML, Driussi G, Chizzolini M. Effect of incision size and site on corneal endothelial changes in cataract surgery. J Cataract Refract Surg. 2002;28:118–25.
    1. Silva RA, Jain A, Manche EE. Prospective long-term evaluation of the efficacy, safety, and stability of the phakic intraocular lens for high myopia. Arch Ophthalmol. 2008;126:775–81.
    1. Storr-Paulsen A, Norregaard JC, Ahmed S, Storr-Paulsen T, Pedersen TH. Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg. 2008;34:996–1000.
    1. Edelhauser HF, Sanders DR, Azar R, Lamielle H ICL in Treatment of Myopia Study Group. Corneal endothelial assessment after ICL implantation. J Cataract Refract Surg. 2004;30:576–83.

Source: PubMed

3
Tilaa