Heterogeneous vancomycin-intermediate susceptibility in a community-associated methicillin-resistant Staphylococcus aureus epidemic clone, in a case of Infective Endocarditis in Argentina

Claudia Sola, Ricardo O Lamberghini, Marcos Ciarlantini, Ana L Egea, Patricia Gonzalez, Elda G Diaz, Vanina Huerta, Jose Gonzalez, Alejandra Corso, Mario Vilaro, Juan P Petiti, Alicia Torres, Ana Vindel, Jose L Bocco, Claudia Sola, Ricardo O Lamberghini, Marcos Ciarlantini, Ana L Egea, Patricia Gonzalez, Elda G Diaz, Vanina Huerta, Jose Gonzalez, Alejandra Corso, Mario Vilaro, Juan P Petiti, Alicia Torres, Ana Vindel, Jose L Bocco

Abstract

Background: Community-Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA) has traditionally been related to skin and soft tissue infections in healthy young patients. However, it has now emerged as responsible for severe infections worldwide, for which vancomycin is one of the mainstays of treatment. Infective endocarditis (IE) due to CA-MRSA with heterogeneous vancomycin-intermediate susceptibility-(h-VISA) has been recently reported, associated to an epidemic USA 300 CA-MRSA clone.

Case presentation: We describe the occurrence of h-VISA phenotype in a case of IE caused by a strain belonging to an epidemic CA-MRSA clone, distinct from USA300, for the first time in Argentina. The isolate h-VISA (SaB2) was recovered from a patient with persistent bacteraemia after a 7-day therapy with vancomycin, which evolved to fatal case of IE complicated with brain abscesses. The initial isolate-(SaB1) was fully vancomycin susceptible (VSSA). Although MRSA SaB2 was vancomycin susceptible (≤ 2 μg/ml) by MIC (agar and broth dilution, E-test and VITEK 2), a slight increase of MIC values between SaB1 and SaB2 isolates was detected by the four MIC methods, particularly for teicoplanin. Moreover, Sab2 was classified as h-VISA by three different screening methods [MHA5T-screening agar, Macromethod-E-test-(MET) and by GRD E-test] and confirmed by population analysis profile-(PAP). In addition, a significant increase in cell-wall thickness was revealed for SaB2 by electron microscopy. Molecular typing showed that both strains, SaB1 and SaB2, belonged to ST5 lineage, carried SCCmecIV, lacked Panton-Valentine leukocidin-(PVL) genes and had indistinguishable PFGE patterns (subtype I2), thereby confirming their isogenic nature. In addition, they were clonally related to the epidemic CA-MRSA clone (pulsotype I) detected in our country.

Conclusions: This report demonstrates the ability of this epidemic CA-MRSA clone, disseminated in some regions of Argentina, to produce severe and rapidly fatal infections such as IE, in addition to its ability to acquire low-level vancomycin resistance; for these reasons, it constitutes a new challenge for the Healthcare System of this country.

Figures

Figure 1
Figure 1
Transesophageal echocardiography of a patient with infective endocarditis caused by CA-MRSA with phenotype h-VISA, Argentina. Left: On April 12, the highly mobile vegetation on the aortic valve (AV) of 20 × 41 mm (white arrow). Right: On April 24, slight decrease in the aortic valve (AV) vegetation (white arrow) and a new vegetation on the mitral valve (MV) (10 × 4.6 mm) of low motility (white arrow).
Figure 2
Figure 2
Transmission electron microscopy of initial isolate (SaB1)-VSSA vs. after persistent bacteremia isolate (SaB2)-h-VISA. Comparison of the cell thickness among the pair of strains (SaB2 vs SaB1) and one derivative VISA (CIM 4 μg/ml) obtained on PAP (PAPd4). Quality control strains included S. aureus ATCC 29213 and Mu50, control, negative and positive for VISA, respectively. Magnification: × 60,000. Values given under each image are mean ± SD of the cell wall thickness in nanometers. Student's t test demonstrated that this augment in cell wall thickness was statistically significant (p <0.001).

References

    1. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23:616–87. doi: 10.1128/CMR.00081-09.
    1. Deurenberg RH, Stobberingh EE. The molecular evolution of hospital- and community-associated methicillin-resistant Staphylococcus aureus. Curr Mol Med. 2009;9:100–15. doi: 10.2174/156652409787581637.
    1. Reyes J, Rincon S, Diaz L, Panesso D, Contreras GA, Zurita J, Carrillo C, Rizzi A, Guzman M, Adachi J, Chowdhury S, Murray BE, Arias CA. Dissemination of methicillin-resistant Staphylococcus aureus USA300 sequence type 8 lineage in Latin America. Clin Infect Dis. 2009;49:1861–7. doi: 10.1086/648426.
    1. Sola C, Saka HA, Vindel A, Bocco JL. Cordoba MRSA Collaborative Study Group. Emergence and dissemination of a community-associated methicillin-resistant Panton-Valentine leucocidin-positive Staphylococcus aureus clone sharing the sequence type 5 lineage with the most prevalent nosocomial clone in the same region of Argentina. J Clin Microbiol. 2008;46:1826–31. doi: 10.1128/JCM.01949-07.
    1. Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23:99–139. doi: 10.1128/CMR.00042-09.
    1. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, Rybak MJ, Talan DA, Chambers HF. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55. doi: 10.1093/cid/ciq146.
    1. Millar BC, Prendergast BD, Moore JE. Community-associated MRSA (CA-MRSA): an emerging pathogen in infective endocarditis. J Antimicrob Chemother. 2008;61:1–7. doi: 10.1093/jac/dkm441.
    1. Bassetti M, Nicco E, Malgorzata M, Viscoli C, Valbusa A, Bongiorno D, Campanile F, Stefani S. Community associated methicillin resistant Staphylococcus aureus (CA-MRSA) infective endocarditis in Italy. J Infect. 2010;61:353–5.
    1. Lee SY, Kim JY, Kim JH, Kim SY, Park C, Park YS, Seo YH, Cho YK. A case of primary infective endocarditis caused by community-associated methicillin-resistant Staphylococcus aureus in a healthy individual and colonization in the family. Yonsei Med J. 2009;50:152–5. doi: 10.3349/ymj.2009.50.1.152.
    1. Hageman JC, Patel J, Franklin P, Miscavish K, McDougal L, Lonsway D, Khan FN. Occurrence of a USA300 vancomycin-intermediate Staphylococcus aureus. Diagn Microbiol Infect Dis. 2008;62:440–2. doi: 10.1016/j.diagmicrobio.2008.08.005.
    1. Graber CJ, Wong MK, Carleton HA, Perdreau-Remington F, Haller BL, Chambers HF. Intermediate vancomycin susceptibility in a community-associated MRSA clone. Emerg Infect Dis. 2007;13:491–3. doi: 10.3201/eid1303.060960.
    1. Cafiso V, Bertuccio T, Spina D, Campanile F, Bongiorno D, Santagati M, Sciacca A, Sciuto C, Stefani S. Methicillin resistance and vancomycin heteroresistance in Staphylococcus aureus in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 2010;29:1277–85. doi: 10.1007/s10096-010-1000-5.
    1. Gardella N, von Specht M, Cuirolo A, Rosato A, Gutkind G, Mollerach M. Community-associated methicillin-resistant Staphylococcus aureus, eastern Argentina. Diagn Microbiol Infect. 2008;62:343–7. doi: 10.1016/j.diagmicrobio.2008.07.008.
    1. Bae IG, Federspiel JJ, Miro JM, Woods CW, Park L, Rybak MJ, Rude TH, Bradley S, Bukovski S, de la Maria CG, Kanj SS, Korman TM, Marco F, Murdoch DR, Plesiat P, Rodriguez-Creixems M, Reinbott P, Steed L, Tattevin P, Tripodi MF, Newton KL, Corey GR, Fowler VG Jr. International Collaboration on Endocarditis-Microbiology Investigator. Heterogeneous vancomycin-intermediate susceptibility phenotype in bloodstream methicillin-resistant Staphylococcus aureus isolates from an international cohort of patients with infective endocarditis: prevalence, genotype, and clinical significance. J Infect Dis. 2009;200:1355–66. doi: 10.1086/606027.
    1. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. nineteenth informational supplement. CLSI, Wayne, Pennsylvania. 2009. pp. M100–S19.
    1. Sola C, Cortes P, Saka HA, Vindel A, Bocco JL. Cordoba MRSA Collaborative Study Group. Evolution and molecular characterization of methicillin-resistant Staphylococcus aureus epidemic and sporadic clones in Cordoba, Argentina. J Clin Microbiol. 2006;44:192–200. doi: 10.1128/JCM.44.1.192-200.2006.
    1. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40:135–6. doi: 10.1093/jac/40.1.135.
    1. Petiti JP, De Paul AL, Gutierrez S, Palmeri CM, Mukdsi JH, Torres AI. Activation of PKC epsilon induces lactotroph proliferation through ERK1/2 in response to phorbol ester. Mol Cell Endocrinol. 2008;289:77–84. doi: 10.1016/j.mce.2008.04.015.
    1. Lee SS, Kim YJ, Chung DR, Jung KS, Kim JS. Invasive infection caused by a community-associated methicillin-resistant Staphylococcus aureus strain not carrying Panton-Valentine leukocidin in South Korea. J Clin Microbiol. 2010;48:311–3. doi: 10.1128/JCM.00297-09.
    1. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375:1557–68. doi: 10.1016/S0140-6736(09)61999-1.
    1. Coombs GW, Monecke S, Ehricht R, Slickers P, Pearson JC, Tan HL, Christiansen KJ, O'Brien FG. Differentiation of clonal complex 59 community-associated methicillin-resistant Staphylococcus aureus in Western Australia. Antimicrob Agents Chemother. 2010;54:1914–21. doi: 10.1128/AAC.01287-09.
    1. Fortes CQ, Espanha CA, Bustorff FP, Zappa BC, Ferreira AL, Moreira RB, Pereira NG, Fowler VG Jr, Deshmukh H. First reported case of infective endocarditis caused by community-acquired methicillin-resistant Staphylococcus aureus not associated with healthcare contact in Brazil. Braz J Infect Dis. 2008;12:541–3. doi: 10.1590/S1413-86702008000600020.
    1. Boucher H, Miller LG, Razonable RR. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2010;51(Suppl 2):S183–97.
    1. Goldberg E, Paul M, Talker O, Samra Z, Raskin M, Hazzan R, Leibovici L, Bishara J. Co-trimoxazole versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteraemia: a retrospective cohort study. J Antimicrob Chemother. 2010;65:1779–83. doi: 10.1093/jac/dkq179.
    1. Corey GR. Staphylococcus aureus bloodstream infections: definitions and treatment. Clin Infect Dis. 2009;48(Suppl 4):S254–9.
    1. Markowitz N, Quinn EL, Saravolatz LD. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of Staphylococcus aureus infection. Ann Intern Med. 1992;117:390–8.
    1. Maor Y, Hagin M, Belausov N, Keller N, Ben-David D, Rahav G. Clinical features of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia versus those of methicillin-resistant S. aureus bacteremia. J Infect Dis. 2009;199:619–24. doi: 10.1086/596629.
    1. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fatkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE. S aureus Endocarditis and Bacteremia Study Group. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65. doi: 10.1056/NEJMoa053783.

Source: PubMed

3
Tilaa