Rooming-in Reduces Salivary Cortisol Level of Newborn

Giuseppe De Bernardo, Marina Riccitelli, Maurizio Giordano, Fabrizio Proietti, Desiree Sordino, Mariangela Longini, Giuseppe Buonocore, Serafina Perrone, Giuseppe De Bernardo, Marina Riccitelli, Maurizio Giordano, Fabrizio Proietti, Desiree Sordino, Mariangela Longini, Giuseppe Buonocore, Serafina Perrone

Abstract

Background: Rooming-in practice improves breastfeeding and reduces newborn stress reactivity. When this modality is not available, partial rooming-in after birth can be considered. Salivary cortisol levels (SCLs) are considered reliable biomarkers to indicate stress.

Objective: To test the hypothesis that rooming-in duration impacts neonatal stress response in hospitalized newborns.

Design/methods: Forty term newborns, enrolled in the Neonatology and Obstetrics Nursing, C.G. Ruesch, Naples, Italy, were divided, according to the mother's choice, into the study (SG; n = 20) and control (CG; n = 20) groups if they received full (24 hs) or partial (14 hs) rooming-in care, respectively. Saliva samples were collected from all babies between 7:00 a.m. and 8:00 a.m. of the 3rd day of life by using oral swab. Salivary cortisol levels were measured using an enzyme immunoassay kit (Salimetrics LLC, PA, USA).

Results: A statistically significant difference in the SCLs between SG and CG was found (median: 258 ng/dl versus 488.5 ng/dl; p = 0.048).

Conclusions: Data support the practice of full rooming-in care compared with partial rooming-in. The rooming-in duration clearly reduces SCLs and likely neonatal stress. These lower SCLs may have long-term positive effects reducing the risk of metabolic syndrome, high blood pressure, and cognitive and behavioural changes.

Figures

Figure 1
Figure 1
Salivar cortisol levels in the study group and the control group.

References

    1. Grunau R. E. Neonatal pain in very preterm infants: long-term effects on brain, neurodevelopment and pain reactivity. Rambam Maimonides Medical Journal. 2013;4(4, article e0025) doi: 10.5041/rmmj.10132.
    1. Grunau R. E., Holsti L., Haley D. W., et al. Neonatal procedural pain exposure predicts lower cortisol and behavioral reactivity in preterm infants in the NICU. Pain. 2005;113(3):293–300. doi: 10.1016/j.pain.2004.10.020.
    1. Miller S. P., Ferriero D. M. From selective vulnerability to connectivity: insights from newborn brain imaging. Trends in Neurosciences. 2009;32(9):496–505. doi: 10.1016/j.tins.2009.05.010.
    1. Provenzi L., Giusti L., Fumagalli M., et al. Pain-related stress in the Neonatal Intensive Care Unit and salivary cortisol reactivity to socio-emotional stress in 3-month-old very preterm infants. Psychoneuroendocrinology. 2016;72:161–165. doi: 10.1016/j.psyneuen.2016.07.010.
    1. Cabral D. M., Antonini S. R., Custódio R. J., Martinelli C. E., da Silva C. A. B. Measurement of salivary cortisol as a marker of stress in newborns in a neonatal intensive care unit. Hormone Research in Paediatrics. 2013;79(6):373–378. doi: 10.1159/000351942.
    1. Mörelius E., Theodorsson E., Nelson N. Salivary cortisol and mood and pain profiles during skin-to-skin care for an unselected group of mothers and infants in neonatal intensive care. Pediatrics. 2005;116(5):1105–1113. doi: 10.1542/peds.2004-2440.
    1. Hellhammer D. H., Wüst S., Kudielka B. M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–171. doi: 10.1016/j.psyneuen.2008.10.026.
    1. Francis S. J., Walker R. F., Riad-Fahmy D., Hughes D., Murphy J. F., Gray O. P. Assessment of adrenocortical activity in term newborn infants using salivary cortisol determinations. The Journal of Pediatrics. 1987;111(1):129–133. doi: 10.1016/S0022-3476(87)80359-1.
    1. Morelius E., Nelson N., Theodorsson E. Salivary cortisol and administration of concentrated oral glucose in newborn infants: improved detection limit and smaller sample volumes without glucose interference. Scandinavian Journal of Clinical and Laboratory Investigation. 2004;64(2):113–118. doi: 10.1080/00365510410004452.
    1. Castral T. C., Warnock F., Dos Santos C. B., et al. Maternal mood and concordant maternal and infant salivary cortisol during heel lance while in kangaroo care. European Journal of Pain. 2015;19(3):429–438. doi: 10.1002/ejp.566.
    1. Gunnar M. R., Talge N. M., Herrera A., et al. Stressor paradigms in developmental studies: what does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology. 2009;34(7):953–967. doi: 10.1016/j.psyneuen.2009.02.010.
    1. Jaafar S. H., Ho J. J., Lee K. S. Rooming-in for new mother and infant versus separate care for increasing the duration of breastfeeding. Cochrane Database of Systematic Reviews. 2016;8 doi: 10.1002/14651858.cd006641.pub3.
    1. Császár N., Bókkonac N. Mother-newborn separation at birth in hospitals: a possible risk for neurodevelopmental disorders? Neuroscience & Biobehavioral Reviews. 2018;84:337–351. doi: 10.1016/j.neubiorev.2017.08.013.
    1. Kaufman J., Plotsky P. M., Nemeroff C. B., Charney D. S. Effects of early adverse experiences on brain structure and function: clinical implications. Biological Psychiatry. 2000;48(8):778–790. doi: 10.1016/S0006-3223(00)00998-7.
    1. Moore E. R., Bergman N., Anderson G. C., Medley N., Cochrane Pregnancy and Childbirth Group Early skin-to-skin contact for mothers and their healthy newborn infants. Cochrane Database of Systematic Reviews. 2016;11 doi: 10.1002/14651858.cd003519.pub4.
    1. Als H. A synactive model of neonatal behavioral organization: framework for the assessment and support of the neurobehavioral development of the premature infant and his parents in the environment of the neonatal intensive care unit. In JK Sweeney (ed.), The high risk neonate: developmental therapy perspectives. Physical & Occupational Therapy in Pediatrics. 1986;6(3):3–53. doi: 10.1300/j006v06n03_02.
    1. McKnight S., Coo H., Davies G., et al. Rooming-in for infants at risk of neonatal abstinence syndrome. American Journal of Perinatology. 2016;33(5):495–501. doi: 10.1055/s-0035-1566295.
    1. Levine S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology. 2005;30(10):939–946. doi: 10.1016/j.psyneuen.2005.03.013.
    1. Gitau R., Fisk N. M., Glover V. Human fetal and maternal corticotrophin releasing hormone responses to acute stress. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2004;89(1):F29–F32. doi: 10.1136/fn.89.1.f29.
    1. Bolt R. J., Van Weissenbruch M. M., Popp-Snijders C., Sweep F. G. J., Lafeber H. N., Delemarre-van de Waal H. A. Maturity of the adrenal cortex in very preterm infants is related to gestational age. Pediatric Research. 2002;52(3):405–410. doi: 10.1203/00006450-200209000-00017.
    1. Murphy B. E. Cortisol and cortisone in human fetal development. Journal of Steroid Biochemistry. 1979;11(1):509–513. doi: 10.1016/0022-4731(79)90075-X.
    1. Schuller C., Känel N., Müller O., et al. Stress and pain response of neonates after spontaneous birth and vacuum-assisted and cesarean delivery. American Journal of Obstetrics and Gynecology. 2012;207(5):p. 416.
    1. Taylor A., Fisk N. M., Glover V. Mode of delivery and subsequent stress response. Lancet. 2000;355(9198):p. 120. doi: 10.1016/S0140-6736(99)02549-0.
    1. Stevens B., Yamada J., Ohlsson A., et al. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database of Systematic Reviews. 2004;7 doi: 10.1002/14651858.CD001069.pub2.
    1. Ivars K., Nelson N., Theodorsson A. Development of salivary cortisol circadian rhythm and reference intervals in full-term infants. PLoS One. 2015;10(6, article e0129502) doi: 10.1371/journal.pone.0129502.

Source: PubMed

3
Tilaa