Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates - the in utero microbial colonization hypothesis

Juliana Morais, Cláudia Marques, Diana Teixeira, Catarina Durão, Ana Faria, Sara Brito, Manuela Cardoso, Israel Macedo, Esmeralda Pereira, Teresa Tomé, Conceição Calhau, Juliana Morais, Cláudia Marques, Diana Teixeira, Catarina Durão, Ana Faria, Sara Brito, Manuela Cardoso, Israel Macedo, Esmeralda Pereira, Teresa Tomé, Conceição Calhau

Abstract

Growing evidence suggests that maternal microbiota can influence the neonates' gut colonization. However, the mechanisms of vertical bacterial transmission remain poorly defined. We believed that the first colonizers of the newborn come from the mother's gut and vagina during pregnancy and that this is independent of the mode of delivery. We conducted an observational longitudinal study to evaluate the link between the maternal gut microbiota and the meconium's microbiota in extremely and very preterm neonates. Bacterial DNA was extracted from samples and specific bacterial groups were quantified by RT-PCR. In this cohort of 117 preterm neonates, we detected bacterial DNA in 88% of meconium samples. Meconium microbiota of neonates born after 28 gestational weeks (very preterm neonates) showed stronger correlations with their mothers' fecal microbiota. However, neonates born before 28 gestational weeks (extremely preterm neonates) had more Lactobacillus - genus that dominated the vaginal microbiota - than very preterm neonates, regardless of the mode of delivery. Collectively, these data support the hypothesis that maternal bacteria from the gut and vagina can play a role in shaping neonates' gut microbiota and that mother-to-infant bacterial transmission is a controlled and time-specific process. ClinicalTrials.gov Identifier: NCT03663556.

Keywords: Lactobacillus; maternal microbiota; meconium; preterm neonates.

Figures

Figure 1.
Figure 1.
Sample characterization. (a) Clinical characterization of preterm neonates. (b) Specific bacterial group levels in neonates’ meconium (a, b, c), and in their mothers fecal samples (d, f, e). Negative controls for sample collection, DNA extraction and RT-PCR (n = 5). Data are expressed as mean ± SEM.
Figure 1.
Figure 1.
Sample characterization. (a) Clinical characterization of preterm neonates. (b) Specific bacterial group levels in neonates’ meconium (a, b, c), and in their mothers fecal samples (d, f, e). Negative controls for sample collection, DNA extraction and RT-PCR (n = 5). Data are expressed as mean ± SEM.
Figure 2.
Figure 2.
Scatterplots showing the association between mothers’ microbiota and their neonates’ microbiota (Spearman's correlation): (a) represent correlation between very preterm neonates and their mothers; (b) correlations of mother-infants pairs delivered by C-section.
Figure 3.
Figure 3.
(a) Content of Lactobacillus in preterm neonates’ meconium regarding gestational age and mode of deliver. (b) Content of total bacteria in preterm neonates’ meconium regarding gestational age and mode of delivery. Data are expressed as mean ± SEM.
Figure 4.
Figure 4.
Controlled and time-specific mother-to-infant bacterial transmission: (a), the vertical bacterial transmission starts mainly with Lactobacillus (predominantly from vaginal microbiota) via the vaginal ascending route; (b), during the third trimester, maternal gut bacteria is predominantly transmitted to the fetus intestine via the hematogenous route and through deglutination of amniotic fluid.
Figure 4.
Figure 4.
Controlled and time-specific mother-to-infant bacterial transmission: (a), the vertical bacterial transmission starts mainly with Lactobacillus (predominantly from vaginal microbiota) via the vaginal ascending route; (b), during the third trimester, maternal gut bacteria is predominantly transmitted to the fetus intestine via the hematogenous route and through deglutination of amniotic fluid.

References

    1. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J.. A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5:1–9. doi:10.1186/s40168-017-0268-4.
    1. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, Narbad A, Olivares M, Xaus J, Rodríguez JM, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51:270–274. doi:10.1007/s00284-005-0020-3.
    1. Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, Fernández L, Rodríguez JM. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159:187–193. doi:10.1016/j.resmic.2007.12.007.
    1. Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra265. doi:10.1126/scitranslmed.3008599.
    1. Stout MJ, Conlon B, Landeau M, Lee I, Bower C, Zhao Q, Roehl KA, Nelson DM, Macones GA, Mysorekar IU, et al. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am J Obs Gynecol. 2013;208(226):e1–7. doi:10.1016/j.ajog.2013.01.018.
    1. Seferovic MD, Pace RM, Carroll M, Belfort B, Major AM, Chu DM, Racusin DA, Castro ECC, Muldrew KL, Versalovic J, et al. Visualization of microbes by 16S in situ hybridization in term and preterm placentas without intraamniotic infection. Am J Obstet Gynecol. 2019;221(146):e1–23. doi:10.1016/j.ajog.2019.04.036.
    1. Lauder AP, Roche AM, Sherrill-Mix S, Bailey A, Laughlin AL, Bittinger K, Leite R, Elovitz MA, Parry S, Bushman FD. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;1–11. doi:doi:10.1186/s40168-016-0172-3.
    1. Chong CYL, Bloomfiel FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018;10:1–17. doi:10.3390/nu10030274.
    1. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Palacio SD, Montes SA, Mancabelli L, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. 2017;81:1–67.
    1. Korpela K, Blakstad EW, Moltu SJ, Strommen K, et al. Intestinal microbiota development and gestational age in preterm neonates. Scientific Reports. 201810.1038/s41598-018-20827-x..
    1. Barrett E, Kerr C, Murphy K, O’Sullivan O, Ryan CA, Dempsey EM, Murphy BP, O’Toole PW, Cotter PD, Fitzgerald GF, et al. The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child - Fetal Neonatal Ed. 2013;98:F334–F340. doi:10.1136/archdischild-2012-303035.
    1. Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O’Shea CA, Watkins C, Dempsey E, Mattivi F, Tuohy K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5:4. doi:10.1186/s40168-016-0213-y.
    1. World Health Organization. Born Too Soon: The Global Action Report on Preterm Birth. Geneva: World Health Organization, 2012.
    1. Staude B, Oehmke F, Lauer T, Behnke J, Göpel W, Schloter M, Schulz H, Krauss-Etschmann S, Ehrhardt H. The microbiome and preterm birth: a change in paradigm with profound implications for pathophysiologic concepts and novel therapeutic strategies. Biomed Res Int. 2018;2018:1–12. doi:10.1155/2018/7218187.
    1. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome article mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–145. doi:10.1016/j.chom.2018.06.005.
    1. Wilczyńska P, Skarżyńska E, Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: questions and answers. J Matern Neonatal Med. 2018;32:681–686. doi:10.1080/14767058.2017.1387888.
    1. Wang S, Ryan CA, Boyaval P, Dempsey EM, Ross, EP and Stanton, C. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol. 2019;1–19. doi:doi:10.1016/j.tim.2019.07.010.
    1. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients. 2015;7:6924–6937. doi:10.3390/nu7085315.
    1. Neu J. The microbiome and its impact on disease in the preterm patient. Curr Pediatr Rep. 2013;1:215–221. doi:10.1007/s40124-013-0031-7.
    1. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi:10.1038/srep23129.
    1. Project HM. A framework for human microbiome research. Nature. 2012;486:215–221.
    1. O’Hanlon DE, Moench TR, Cone RA. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS One. 2013;8:1–8. doi:10.1371/journal.pone.0080074.
    1. Aagaard K, Riehle K, Ma J, Segata N, Mistretta T-A, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One. 2012;7:e36466. doi:10.1371/journal.pone.0036466.
    1. Dong TS, Gupta A, Angeles L. Influence of early life, diet, and the environment on the microbiome. Clin Gastroenterol Hepatol. 2019;17:231–242. doi:10.1016/j.cgh.2018.08.067.
    1. Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, Murgas-Torrazza R, Sharma R, Hudak ML, Triplett EW, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9:1–8. doi:10.1371/journal.pone.0090784.
    1. Chen C, Song X, Wei W, Zhong H, Juanjuan D, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 2017;8(1):875. doi:10.1038/s41467-017-00901-0.
    1. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23:314–326. doi:doi:10.1038/nm.4272.
    1. Soderborg TK, Borengasser SJ, Barbour LA, Friedman JE. Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia. 2016;59:895–906. doi:10.1007/s00125-016-3880-0.
    1. Morais J, Marques C, Teixeira D, Durão C, Faria A, Brito S, Cardoso M, Macedo I, Tomé T, Calhau C. FEEDMI: a study protocol to determine the influence of infant-feeding on very-preterm-infant’s gut microbiota. Neonaotlogy. 2019;27:1–6.
    1. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74:4985–4996. doi:10.1128/AEM.00753-08.

Source: PubMed

3
Tilaa