Malignant Peripheral Nerve Sheath Tumors State of the Science: Leveraging Clinical and Biological Insights into Effective Therapies

AeRang Kim, Douglas R Stewart, Karlyne M Reilly, David Viskochil, Markku M Miettinen, Brigitte C Widemann, AeRang Kim, Douglas R Stewart, Karlyne M Reilly, David Viskochil, Markku M Miettinen, Brigitte C Widemann

Abstract

Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of mortality in patients with neurofibromatosis type 1. In 2002, an MPNST consensus statement reviewed the current knowledge and provided guidance for the diagnosis and management of MPNST. Although the improvement in clinical outcome has not changed, substantial progress has been made in understanding the natural history and biology of MPNST through imaging and genomic advances since 2002. Genetically engineered mouse models that develop MPNST spontaneously have greatly facilitated preclinical evaluation of novel drugs for translation into clinical trials led by consortia efforts. Continued work in identifying alterations that contribute to the transformation, progression, and metastasis of MPNST coupled with longitudinal follow-up, biobanking, and data sharing is needed to develop prognostic biomarkers and effective prevention and therapeutic strategies for MPNST.

Figures

Figure 1
Figure 1
Pathogenesis of peripheral nerve sheath tumors in NF1. Percentages below each tumor type is the range of lifetime prevalence in individuals with NF1. Representative clinical photograph (a), MRI imaging (b), histology (c), clinical symptomology (d), and genetic features (e) of each tumor type are given. Histologically, plexiform neurofibroma shows mixture of areas of hypercellularity in the absence of other atypical features. Atypical neurofibroma shows atypical nuclei and higher cellularity. In contrast, MPNST are highly cellular with high mitotic activity and areas of necrosis.

References

    1. Ferner R. E. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. The Lancet Neurology. 2007;6(4):340–351. doi: 10.1016/s1474-4422(07)70075-3.
    1. Evans D. G. R., Baser M. E., McGaughran J., Sharif S., Howard E., Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis. Journal of Medical Genetics. 2002;39(5):311–314. doi: 10.1136/jmg.39.5.311.
    1. Uusitalo E., Rantanen M., Kallionpää R. A., et al. Distinctive cancer associations in patients with neurofibromatosis type 1. Journal of Clinical Oncology. 2016;34(17):1978–1986. doi: 10.1200/jco.2015.65.3576.
    1. Meany H., Widemann B. C., Ratner N. Neurofibromatosis Type 1. Berlin, Germany: Springer; 2012. Malignant peripheral nerve sheath tumors: prognostic and diagnostic markers and therapeutic targets; pp. 445–467.
    1. Scaife C. L., Pisters P. W. T. Combined-modality treatment of localized soft tissue sarcomas of the extremities. Surgical Oncology Clinics of North America. 2003;12(2):355–368. doi: 10.1016/S1055-3207(03)00003-6.
    1. Pisters P. W., Leung D. H., Woodruff J., Shi W., Brennan M. F. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. Journal of Clinical Oncology. 1996;14(5):1679–1689. doi: 10.1200/JCO.1996.14.5.1679.
    1. Gupta G., Mammis A., Maniker A. Malignant peripheral nerve sheath tumors. Neurosurgery Clinics of North America. 2008;19(4):533–543. doi: 10.1016/j.nec.2008.07.004.
    1. Ferner R. E., Gutmann D. H. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Research. 2002;62(5):1573–1577.
    1. Mautner V.-F., Asuagbor F. A., Dombi E., et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro-Oncology. 2008;10(4):593–598. doi: 10.1215/15228517-2008-011.
    1. Kim A., Gillespie A., Dombi E., et al. Characteristics of children enrolled in treatment trials for NF1-related plexiform neurofibromas. Neurology. 2009;73(16):1273–1279. doi: 10.1212/WNL.0b013e3181bd1326.
    1. Wasa J., Nishida Y., Tsukushi S., et al. MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. American Journal of Roentgenology. 2010;194(6):1568–1574. doi: 10.2214/AJR.09.2724.
    1. Matsumine A., Kusuzaki K., Nakamura T., et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. Journal of Cancer Research and Clinical Oncology. 2009;135(7):891–900. doi: 10.1007/s00432-008-0523-y.
    1. Ferner R. E., Golding J. F., Smith M., et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Annals of Oncology. 2008;19(2):390–394. doi: 10.1093/annonc/mdm450.
    1. Broski S. M., Johnson G. B., Howe B. M., et al. Evaluation of 18F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skeletal Radiology. 2016;45(8):1097–1105. doi: 10.1007/s00256-016-2394-7.
    1. Dombi E., Ardern-Holmes S. L., Babovic-Vuksanovic D., et al. Recommendations for imaging tumor response in neurofibromatosis clinical trials. Neurology. 2013;81(21, supplement 1):S33–S40. doi: 10.1212/.
    1. Dombi E., Solomon J., Gillespie A. J., et al. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology. 2007;68(9):643–647. doi: 10.1212/01.wnl.0000250332.89420.e6.
    1. Gutmann D. H., Blakeley J. O., Korf B. R., Packer R. J. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opinion on Investigational Drugs. 2013;22(4):443–462. doi: 10.1517/13543784.2013.772979.
    1. Solomon J., Warren K., Dombi E., Patronas N., Widemann B. Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Computerized Medical Imaging and Graphics. 2004;28(5):257–265. doi: 10.1016/j.compmedimag.2004.03.002.
    1. Nguyen R., Dombi E., Widemann B. C., et al. Growth dynamics of plexiform neurofibromas: a retrospective cohort study of 201 patients with neurofibromatosis 1. Orphanet Journal of Rare Diseases. 2012;7, article 75 doi: 10.1186/1750-1172-7-75.
    1. Akshintala S., Bhaumik S., Venkatesan A., et al. Radiological Society of North America. 2014. Identification of lesions concerning for transformation to malignant peripheral nerve sheath tumors (MPNST) in Neurofibromatosis 1 (NF1)
    1. Meany H., Dombi E., Reynolds J., et al. 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) evaluation of nodular lesions in patients with neurofibromatosis type 1 and plexiform neurofibromas (PN) or malignant peripheral nerve sheath tumors (MPNST) Pediatric Blood and Cancer. 2013;60(1):59–64. doi: 10.1002/pbc.24212.
    1. Higham C., Legius E., Ullrich N., et al. Atypical Neurofibromas in NF1: Clinical, Imaging and Pathology Characteristics. Austin, Tex, USA: Children's Tumor Foundation; 2016.
    1. Beert E., Brems H., Daniëls B., et al. Atypical neurofibromas in neurofibromatosis type 1 are premalignant tumors. Genes Chromosomes and Cancer. 2011;50(12):1021–1032. doi: 10.1002/gcc.20921.
    1. Rodriguez F. J., Folpe A. L., Giannini C., Perry A. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathologica. 2012;123(3):295–319. doi: 10.1007/s00401-012-0954-z.
    1. Widemann B., Bhaumik S., Akshintala S., et al. Identification of lesions concenring for malignant peripheral nerve sheath tumors in NF1. Proceedings of the CTOS Members Business Meeting; 2015; Salt Lake City, Utah, USA.
    1. Bernthal N. M., Putnam A., Jones K. B., Viskochil D., Randall R. L. The effect of surgical margins on outcomes for low grade MPNSTs and atypical neurofibroma. Journal of Surgical Oncology. 2014;110(7):813–816. doi: 10.1002/jso.23736.
    1. Fletcher C. D. M., Unni K. K., Mertens F. WHO Classification of Tumours of Soft Tissue and Bone. 4th. Lyons, France: IARC; 2013.
    1. Scheithauer B. W., Woodruff J. M., Erlandson R. A. Tumors of the Peripheral Nervous System. Washington, DC, USA: Armed Forces Institute of Pathology; 1999. (Atlas of Tumor Pathology Third Series).
    1. Pekmezci M., Reuss D. E., Hirbe A. C., et al. Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas. Modern Pathology. 2015;28(2):187–200. doi: 10.1038/modpathol.2014.109.
    1. Zhang M., Wang Y., Jones S., et al. Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nature Genetics. 2014;46(11):1170–1172. doi: 10.1038/ng.3116.
    1. Hirbe A. C., Dahiya S., Miller C. A., et al. Whole exome sequencing reveals the order of genetic changes during malignant transformation and metastasis in a single patient with NF1-plexiform neurofibroma. Clinical Cancer Research. 2015;21(18):4201–4211. doi: 10.1158/1078-0432.CCR-14-3049.
    1. Carroll S. L. The challenge of cancer genomics in rare nervous system neoplasms: malignant peripheral nerve sheath tumors as a paradigm for cross-species comparative oncogenomics. American Journal of Pathology. 2016;186(3):464–477. doi: 10.1016/j.ajpath.2015.10.023.
    1. Li H., Velasco-Miguel S., Vass W. C., Parada L. F., DeClue J. E. Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Research. 2002;62(15):4507–4513.
    1. De Raedt T., Beert E., Pasmant E., et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014;514(7521):247–251. doi: 10.1038/nature13561.
    1. Lee W., Teckie S., Wiesner T., et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nature Genetics. 2014;46(11):1227–1232. doi: 10.1038/ng.3095.
    1. De Raedt T., Brems H., Wolkenstein P., et al. Elevated risk for MPNST in NF1 microdeletion patients. American Journal of Human Genetics. 2003;72(5):1288–1292. doi: 10.1086/374821.
    1. Cleven A. H. G., Al Sannaa G. A., Briaire-de Bruijn I., et al. Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Modern Pathology. 2016;29(6):582–590. doi: 10.1038/modpathol.2016.45.
    1. Prieto-Granada C. N., Wiesner T., Messina J. L., Jungbluth A. A., Chi P., Antonescu C. R. Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. The American Journal of Surgical Pathology. 2016;40(4):479–489. doi: 10.1097/pas.0000000000000564.
    1. Röhrich M., Koelsche C., Schrimpf D., et al. Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathologica. 2016;131(6):877–887. doi: 10.1007/s00401-016-1540-6.
    1. DeClue J. E., Papageorge A. G., Fletcher J. A., et al. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992;69(2):265–273. doi: 10.1016/0092-8674(92)90407-4.
    1. Ryan J. J., Klein K. A., Neuberger T. J., et al. Role for the stem cell factor/KIT complex in schwann cell neoplasia and mast cell proliferation associated with neurofibromatosis. Journal of Neuroscience Research. 1994;37(3):415–432. doi: 10.1002/jnr.490370314.
    1. Badache A., Muja N., De Vries G. H. Expression of Kit in neurofibromin-deficient human Schwann cells: role in Schwann cell hyperplasia associated with type 1 neurofibromatosis. Oncogene. 1998;17(6):795–800. doi: 10.1038/sj.onc.1201978.
    1. DeClue J. E., Heffelfinger S., Benvenuto G., et al. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. The Journal of Clinical Investigation. 2000;105(9):1233–1241. doi: 10.1172/jci7610.
    1. Dang I., DeVries G. H. Schwann cell lines derived from malignant peripheral nerve sheath tumors respond abnormally to platelet-derived growth factor-BB. Journal of Neuroscience Research. 2005;79(3):318–328. doi: 10.1002/jnr.20334.
    1. Holtkamp N., Okuducu A. F., Mucha J., et al. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis. 2006;27(3):664–671. doi: 10.1093/carcin/bgi273.
    1. Hakozaki M., Hojo H., Sato M., et al. Establishment and characterization of a novel human malignant peripheral nerve sheath tumor cell line, FMS-1, that overexpresses epidermal growth factor receptor and cyclooxygenase-2. Virchows Archiv. 2009;455(6):517–526. doi: 10.1007/s00428-009-0848-1.
    1. Torres K. E., Zhu Q.-S., Bill K., et al. Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors. Clinical Cancer Research. 2011;17(12):3943–3955. doi: 10.1158/1078-0432.CCR-11-0193.
    1. Eckert J. M., Byer S. J., Clodfelder-Miller B. J., Carroll S. L. Neuregulin-1β and neuregulin-1α differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. GLIA. 2009;57(14):1501–1520. doi: 10.1002/glia.20866.
    1. Friedrich C., Holtkamp N., Cinatl J., Jr., et al. Overexpression of Midkine in malignant peripheral nerve sheath tumor cells inhibits apoptosis and increases angiogenic potency. International Journal of Oncology. 2005;27(5):1433–1440.
    1. Demestre M., Terzi M. Y., Mautner V., Vajkoczy P., Kurtz A., Piña A. L. Effects of pigment epithelium derived factor (PEDF) on malignant peripheral nerve sheath tumours (MPNSTs) Journal of Neuro-Oncology. 2013;115(3):391–399. doi: 10.1007/s11060-013-1252-x.
    1. Sonobe H., Takeuchi T., Furihata M., et al. A new human malignant peripheral nerve sheath tumour-cell line, HS-sch-2, harbouring p53 point mutation. International Journal of Oncology. 2000;17(2):347–352.
    1. Holtkamp N., Atallah I., Okuducu A.-F., et al. MMP-13 and p53 in the progression of malignant peripheral nerve sheath tumors. Neoplasia. 2007;9(8):671–677. doi: 10.1593/neo.07304.
    1. Gong M., Ma J., Li M., Zhou M., Hock J. M., Yu X. MicroRNA-204 critically regulates carcinogenesis in malignant peripheral nerve sheath tumors. Neuro-Oncology. 2012;14(8):1007–1017. doi: 10.1093/neuonc/nos124.
    1. Perrin G. Q., Li H., Fishbein L., et al. An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation. Laboratory Investigation. 2007;87(11):1092–1102. doi: 10.1038/labinvest.3700675.
    1. Bhola P., Banerjee S., Mukherjee J., et al. Preclinical in vivo evaluation of rapamycin in human malignant peripheral nerve sheath explant xenograft. International Journal of Cancer. 2010;126(2):563–571. doi: 10.1002/ijc.24783.
    1. Byer S. J., Eckert J. M., Brossier N. M., et al. Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor-independent manner. Neuro-Oncology. 2011;13(1):28–41. doi: 10.1093/neuonc/noq146.
    1. Brosius S. N., Turk A. N., Byer S. J., et al. Neuregulin-1 overexpression and Trp53 haploinsufficiency cooperatively promote de novo malignant peripheral nerve sheath tumor pathogenesis. Acta Neuropathologica. 2014;127(4):573–591. doi: 10.1007/s00401-013-1209-3.
    1. Imaizumi S., Motoyama T., Ogose A., Hotta T., Takahashi H. E. Characterization and chemosensitivity of two human malignant peripheral nerve sheath tumour cell lines derived from a patient with neurofibromatosis type 1. Virchows Archiv. 1998;433(5):435–441. doi: 10.1007/s004280050271.
    1. Hirokawa Y., Nakajima H., Hanemann C. O., et al. Signal therapy of NF1-deficient tumor xenograft in mice by the anti-PAK1 drug FK228. Cancer Biology and Therapy. 2005;4(4):379–381.
    1. Barkan B., Starinsky S., Friedman E., Stein R., Kloog Y. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clinical Cancer Research. 2006;12(18):5533–5542. doi: 10.1158/1078-0432.CCR-06-0792.
    1. Johansson G., Mahller Y. Y., Collins M. H., et al. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Molecular Cancer Therapeutics. 2008;7(5):1237–1245. doi: 10.1158/1535-7163.MCT-07-2335.
    1. Ghadimi M. P., Young E. D., Belousov R., et al. Survivin is a viable target for the treatment of malignant peripheral nerve sheath tumors. Clinical Cancer Research. 2012;18(9):2545–2557. doi: 10.1158/1078-0432.CCR-11-2592.
    1. Wang W., Lin W., Hong B., et al. Effect of triptolide on malignant peripheral nerve sheath tumours in vitro and in vivo. Journal of International Medical Research. 2012;40(6):2284–2294. doi: 10.1177/030006051204000626.
    1. Ohishi J., Aoki M., Nabeshima K., et al. Imatinib mesylate inhibits cell growth of malignant peripheral nerve sheath tumors in vitro and in vivo through suppression of PDGFR-β. BMC Cancer. 2013;13, article 224 doi: 10.1186/1471-2407-13-224.
    1. Patwardhan P. P., Surriga O., Beckman M. J., et al. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clinical Cancer Research. 2014;20(12):3146–3158. doi: 10.1158/1078-0432.CCR-13-2576.
    1. Lopez G., Bill K. L. J., Bid H. K., et al. HDAC8, A potential therapeutic target for the treatment of malignant peripheral nerve sheath tumors (MPNST) PLoS ONE. 2015;10(7) doi: 10.1371/journal.pone.0133302.e0133302
    1. Zhang P., Yang X., Ma X., et al. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Molecular Cancer. 2015;14(1, article 55) doi: 10.1186/s12943-015-0325-1.
    1. Deyle D. R., Escobar D. Z., Peng K.-W., Babovic-Vuksanovic D. Oncolytic measles virus as a novel therapy for malignant peripheral nerve sheath tumors. Gene. 2015;565(1):140–145. doi: 10.1016/j.gene.2015.04.001.
    1. Maldonado A. R., Klanke C., Jeßgga A. G., et al. Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. Journal of Gene Medicine. 2010;12(7):613–623. doi: 10.1002/jgm.1479.
    1. Mahller Y. Y., Vaikunth S. S., Ripberger M. C., et al. Tissue inhibitor of metalloproteinase-3 via oncolytic herpesvirus inhibits tumor growth and vascular progenitors. Cancer Research. 2008;68(4):1170–1179. doi: 10.1158/0008-5472.CAN-07-2734.
    1. Liu T.-C., Zhang T., Fukuhara H., et al. Dominant-negative fibroblast growth factor receptor expression enhances antitumoral potency of oncolytic herpes simplex virus in neural tumors. Clinical Cancer Research. 2006;12(22):6791–6799. doi: 10.1158/1078-0432.CCR-06-0263.
    1. Takamiya Y., Friedlander R. M., Brem H., Malick A., Martuza R. L. Inhibition of angiogenesis and growth of human nerve-sheath tumors by AGM- 1470. Journal of Neurosurgery. 1993;78(3):470–476. doi: 10.3171/jns.1993.78.3.0470.
    1. Castellsagué J., Gel B., Fernández-Rodríguez J., et al. Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine. EMBO Molecular Medicine. 2015;7(5):608–627. doi: 10.15252/emmm.201404430.
    1. De Raedt T., Walton Z., Yecies J. L., et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell. 2011;20(3):400–413. doi: 10.1016/j.ccr.2011.08.014.
    1. Lock R., Ingraham R., Maertens O., et al. Cotargeting MNK and MEK kinases induces the regression of NF1-mutant cancers. Journal of Clinical Investigation. 2016;126(6):2181–2190. doi: 10.1172/JCI85183.
    1. Malone C. F., Fromm J. A., Maertens O., DeRaedt T., Ingraham R., Cichowski K. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Cancer Discovery. 2014;4(9):1062–1073. doi: 10.1158/-14-0159.
    1. Cichowski K., Shih T. S., Schmitt E., et al. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286(5447):2172–2176. doi: 10.1126/science.286.5447.2172.
    1. Vogel K. S., Klesse L. J., Velasco-Miguel S., Meyers K., Rushing E. J., Parada L. F. Mouse tumor model for neurofibromatosis type 1. Science. 1999;286(5447):2176–2179. doi: 10.1126/science.286.5447.2176.
    1. Joseph N. M., Mosher J. T., Buchstaller J., et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell. 2008;13(2):129–140. doi: 10.1016/j.ccr.2008.01.003.
    1. Keng V. W., Rahrmann E. P., Watson A. L., et al. PTEN and NF1 inactivation in Schwann cells produces a severe phenotype in the peripheral nervous system that promotes the development and malignant progression of peripheral nerve sheath tumors. Cancer Research. 2012;72(13):3405–3413. doi: 10.1158/0008-5472.CAN-11-4092.
    1. Wu J., Patmore D. M., Jousma E., et al. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene. 2014;33(2):173–180. doi: 10.1038/onc.2012.579.
    1. Gregorian C., Nakashima J., Dry S. M., et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(46):19479–19484. doi: 10.1073/pnas.0910398106.
    1. Keng V. W., Watson A. L., Rahrmann E. P., et al. Conditional inactivation of Pten with EGFR overexpression in Schwann cells models sporadic MPNST. Sarcoma. 2012;2012:12. doi: 10.1155/2012/620834.620834
    1. Rahrmann E. P., Moriarity B. S., Otto G. M., et al. Trp53 haploinsufficiency modifies EGFR-driven peripheral nerve sheath tumorigenesis. American Journal of Pathology. 2014;184(7):2082–2098. doi: 10.1016/j.ajpath.2014.04.006.
    1. Kazmi S. J., Byer S. J., Eckert J. M., et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. American Journal of Pathology. 2013;182(3):646–667. doi: 10.1016/j.ajpath.2012.11.017.
    1. Dodd R. D., Mito J. K., Eward W. C., et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to mek inhibition. Molecular Cancer Therapeutics. 2013;12(9):1906–1917. doi: 10.1158/1535-7163.MCT-13-0189.
    1. Hirbe A. C., Dahiya S., Friedmann-Morvinski D., Verma I. M., Wade Clapp D., Gutmann D. H. Spatially- and temporally-controlled postnatal p53 knockdown cooperates with embryonic Schwann cell precursor Nf1 gene loss to promote malignant peripheral nerve sheath tumor formation. Oncotarget. 2016;7(7):7403–7414. doi: 10.18632/oncotarget.7232.
    1. Stucky C.-C. H., Johnson K. N., Gray R. J., et al. Malignant Peripheral Nerve Sheath Tumors (MPNST): The Mayo Clinic experience. Annals of Surgical Oncology. 2012;19(3):878–885. doi: 10.1245/s10434-011-1978-7.
    1. Wong W. W., Hirose T., Scheithauer B. W., Schild S. E., Gunderson L. L. Malignant peripheral nerve sheath tumor: analysis of treatment outcome. International Journal of Radiation Oncology Biology Physics. 1998;42(2):351–360. doi: 10.1016/s0360-3016(98)00223-5.
    1. Kaushal A., Citrin D. The role of radiation therapy in the management of sarcomas. Surgical Clinics of North America. 2008;88(3):629–646. doi: 10.1016/j.suc.2008.03.005.
    1. Yang J. C., Chang A. E., Baker A. R., et al. Randomized prospective study of the benefit of adjuvant radiation therapy in the treatment of soft tissue sarcomas of the extremity. Journal of Clinical Oncology. 1998;16(1):197–203. doi: 10.1200/JCO.1998.16.1.197.
    1. Kahn J., Gillespie A., Tsokos M., et al. Radiation therapy in management of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Frontiers in Oncology. 2014;4, article 324 doi: 10.3389/fonc.2014.00324.
    1. Ferrari A., Miceli R., Rey A., et al. Non-metastatic unresected paediatric non-rhabdomyosarcoma soft tissue sarcomas: results of a pooled analysis from United States and European groups. European Journal of Cancer. 2011;47(5):724–731. doi: 10.1016/j.ejca.2010.11.013.
    1. Carli M., Ferrari A., Mattke A., et al. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. Journal of Clinical Oncology. 2005;23(33):8422–8430. doi: 10.1200/jco.2005.01.4886.
    1. Widemann B. C., Reinke D. K., Helman L. J., et al. SARC006: Phase II trial of chemotherapy in sporadic and neurofibromatosis type 1 (NF1)-associated high-grade malignant peripheral nerve sheath tumors (MPNSTs) Journal of Clinical Oncology. 2013;3110522
    1. Albritton K., Rankin C., Coffin C. M., et al. Phase II trial of erlotinib in metastatic or unresectable malignant peripheral nerve sheath tumor (MPNST) Journal of Clinical Oncology. 2006;249518
    1. Maki R. G., D'Adamo D. R., Keohan M. L., et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. Journal of Clinical Oncology. 2009;27(19):3133–3140. doi: 10.1200/jco.2008.20.4495.
    1. Chugh R., Wathen J. K., Maki R. G., et al. Phase II multicenter trial of imatinib in 10 histologic subtypes of sarcoma using a bayesian hierarchical statistical model. Journal of Clinical Oncology. 2009;27(19):3148–3153. doi: 10.1200/jco.2008.20.5054.
    1. Schuetze S., Wathen K., Choy E., et al. Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase II trial of dasatinib in previously treated, high-grade, advanced sarcoma. Journal of Clinical Oncology. 2010;2810009
    1. Dickson M. A., Mahoney M. R., Tap W. D., et al. Phase II study of MLN8237 (Alisertib) in advanced/metastatic sarcoma. Annals of Oncology. 2016;27(10):1855–1860. doi: 10.1093/annonc/mdw281.
    1. Miller A. B., Hoogstraten B., Staquet M., Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–214. doi: 10.1002/1097-0142(19810101)47:1<207::aid-cncr2820470134>;2-6.
    1. Eisenhauer E. A., Therasse P., Bogaerts J., et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) European Journal of Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Choi H., Charnsangavej C., Faria S. C., et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. Journal of Clinical Oncology. 2007;25(13):1753–1759. doi: 10.1200/jco.2006.07.3049.
    1. Katz D., Lazar A., Lev D. Malignant peripheral nerve sheath tumour (MPNST): the clinical implications of cellular signalling pathways. Expert Reviews in Molecular Medicine. 2009;11, article e30 doi: 10.1017/s1462399409001227.

Source: PubMed

3
Tilaa