Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview

Artur Struzik, Kiros Karamanidis, Anna Lorimer, Justin W L Keogh, Jan Gajewski, Artur Struzik, Kiros Karamanidis, Anna Lorimer, Justin W L Keogh, Jan Gajewski

Abstract

Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired "leg-spring" stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher "leg-spring" stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2021 Artur Struzik et al.

Figures

Figure 1
Figure 1
Selection process of papers focused on mechanical stiffness during running [54].
Figure 2
Figure 2
An example of a simple spring-mass model used to estimate leg and vertical stiffness during vertical body displacements only, where COM denotes the centre of mass, ΔL is the change in “spring length” representing both lower limbs, Δy is the displacement of COM, and GRF means the ground reaction force (based on Blickhan [19]).
Figure 3
Figure 3
An example of a spring-mass model used to estimate leg and vertical stiffness during running tasks, where COM denotes centre of mass, ΔL is change in “spring length” representing both lower limbs, and Δy is displacement of COM (based on McMahon and Cheng [20]).
Figure 4
Figure 4
An example of torsional spring model used to estimate ankle, knee, and hip joint stiffness during running tasks, where αankle denotes the ankle joint angle, αknee is the knee joint angle, and αhip is the hip joint angle (based on Farley et al. [111]).

References

    1. Butler R. J., Crowell H. P., 3rd, McClay Davis I. Lower extremity stiffness: implications for performance and injury. Clinical biomechanics . 2003;18(6):511–517. doi: 10.1016/S0268-0033(03)00071-8.
    1. Latash M. L., Zatsiorsky V. Biomechanics and Motor Control: Defining Central Concepts . Amsterdam: Elsevier Science; 2016.
    1. Struzik A. Measuring Leg Stiffness during Vertical Jumps: Theory and Methods . Cham: Springer Nature Switzerland AG; 2019.
    1. Alexander R. M., Bennet-Clark H. C. Storage of elastic strain energy in muscle and other tissues. Nature . 1977;265(5590):114–117. doi: 10.1038/265114a0.
    1. Roberts T. J. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement. Journal of Experimental Biology . 2016;219(2):266–275. doi: 10.1242/jeb.124446.
    1. Wilson J. M., Flanagan E. P. The role of elastic energy in activities with high force and power requirements: a brief review. Journal of Strength and Conditioning Research . 2008;22(5):1705–1715. doi: 10.1519/JSC.0b013e31817ae4a7.
    1. Zawadzki J. Studia i Monografie Akademii Wychowania Fizycznego we Wrocławiu . 78. Wrocław: Wydawnictwo Akademii Wychowania Fizycznego; 2005. Muscle drive strategy in intense cyclic movements of the forearm.
    1. Dalleau G., Belli A., Viale F., Lacour J.-R., Bourdin M. A simple method for field measurements of leg stiffness in hopping. International Journal of Sports Medicine . 2004;25(3):170–176. doi: 10.1055/s-2003-45252.
    1. Maloney S. J., Fletcher I. M. Lower limb stiffness testing in athletic performance: a critical review. Sports Biomechanics . 2021;20:109–130. doi: 10.1080/14763141.2018.1460395.
    1. Freitas S. R., Mendes B., le Sant G., Andrade R. J., Nordez A., Milanovic Z. Can chronic stretching change the muscle-tendon mechanical properties? A review. Scandinavian Journal of Medicine and Science in Sports . 2018;28(3):794–806. doi: 10.1111/sms.12957.
    1. Raiteri B. J., Cresswell A. G., Lichtwark G. A. Muscle-tendon length and force affect human tibialis anterior central aponeurosis stiffness in vivo. Proceedings of the National Academy of Sciences of the United States of America . 2018;115(14):E3097–E3105. doi: 10.1073/pnas.1712697115.
    1. Monte A., Zignoli A. Muscle and tendon stiffness and belly gearing positively correlate with rate of torque development during explosive fixed end contractions. Journal of Biomechanics . 2021;114:p. 110110. doi: 10.1016/j.jbiomech.2020.110110.
    1. Davidson M. J., Bryant A. L., Bower W. F., Frawley H. C. Myotonometry reliably measures muscle stiffness in the thenar and perineal muscles. Physiotherapy Canada . 2017;69(2):104–112. doi: 10.3138/ptc.2015-85.
    1. Kyröläinen H., Avela J., Komi P. V. Changes in muscle activity with increasing running speed. Journal of Sports Sciences . 2005;23(10):1101–1109. doi: 10.1080/02640410400021575.
    1. Wickiewicz T. L., Roy R. R., Powell P. L., Perrine J. J., Edgerton V. R. Muscle architecture and force-velocity relationships in humans. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology . 1984;57(2):435–443. doi: 10.1152/jappl.1984.57.2.435.
    1. Lieber R. L., Bodine-Fowler S. C. Skeletal muscle mechanics: implications for rehabilitation. Physical Therapy . 1993;73(12):844–856. doi: 10.1093/ptj/73.12.844.
    1. Lieber R. L., Fridén J. Clinical significance of skeletal muscle architecture. Clinical Orthopaedics and Related Research . 2001;383:140–151. doi: 10.1097/00003086-200102000-00016.
    1. Latash M. L., Zatsiorsky V. M. Joint stiffness: myth or reality? Human Movement Science . 1993;12(6):653–692. doi: 10.1016/0167-9457(93)90010-M.
    1. Blickhan R. The spring-mass model for running and hopping. Journal of Biomechanics . 1989;22(11-12):1217–1227. doi: 10.1016/0021-9290(89)90224-8.
    1. McMahon T. A., Cheng G. C. The mechanics of running: how does stiffness couple with speed? Journal of Biomechanics . 1990;23(suppl. 1):65–78. doi: 10.1016/0021-9290(90)90042-2.
    1. Serpell B. G., Ball N. B., Scarvell J. M., Smith P. N. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. Journal of Sports Sciences . 2012;30(13):1347–1363. doi: 10.1080/02640414.2012.710755.
    1. Brazier J., Maloney S., Bishop C., Read P. J., Turner A. N. Lower extremity stiffness: considerations for testing, performance enhancement, and injury risk. Journal of Strength and Conditioning Research . 2019;33(4):1156–1166. doi: 10.1519/JSC.0000000000002283.
    1. Brughelli M., Cronin J. Influence of running velocity on vertical, leg and joint stiffness: modelling and recommendations for future research. Sports Medicine . 2008;38(8):647–657. doi: 10.2165/00007256-200838080-00003.
    1. Brughelli M., Cronin J. A review of research on the mechanical stiffness in running and jumping: methodology and implications. Scandinavian Journal of Medicine & Science in Sports . 2008;18(4):417–426. doi: 10.1111/j.1600-0838.2008.00769.x.
    1. McMahon J. J., Comfort P., Pearson S. Lower limb Stiffness. Strength and Conditioning Journal . 2012;34(5):70–73. doi: 10.1519/SSC.0b013e318268131f.
    1. McMahon J. J., Comfort P., Pearson S. Lower limb Stiffness. Strength and Conditioning Journal . 2012;34(6):94–101. doi: 10.1519/SSC.0b013e3182781b4e.
    1. Pearson S. J., McMahon J. Lower limb mechanical properties: determining factors and implications for performance. Sports Medicine . 2012;42(11):929–940. doi: 10.1007/BF03262304.
    1. Taube W., Leukel C., Gollhofer A. How neurons make us jump: the neural control of stretch-shortening cycle movements. Exercise and Sport Sciences Reviews . 2012;40(2):106–115. doi: 10.1097/JES.0b013e31824138da.
    1. Jaén-Carrillo D., Roche-Seruendo L. E., Felton L., Cartón-Llorente A., García-Pinillos F. Stiffness in running: a narrative integrative review. Strength and Conditioning Journal . 2021;43(2):104–115. doi: 10.1519/SSC.0000000000000593.
    1. Lorimer A. V., Hume P. A. Stiffness as a risk factor for Achilles tendon injury in running athletes. Sports Medicine . 2016;46(12):1921–1938. doi: 10.1007/s40279-016-0526-9.
    1. Arampatzis A., Schade F., Walsh M., Brüggemann G.-P. Influence of leg stiffness and its effect on myodynamic jumping performance. Journal of Electromyography and Kinesiology . 2001;11(5):355–364. doi: 10.1016/S1050-6411(01)00009-8.
    1. Farley C. T., Blickhan R., Saito J., Taylor C. R. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of Applied Physiology . 1991;71(6):2127–2132. doi: 10.1152/jappl.1991.71.6.2127.
    1. Farley C. T., González O. Leg stiffness and stride frequency in human running. Journal of Biomechanics . 1996;29(2):181–186. doi: 10.1016/0021-9290(95)00029-1.
    1. Harrison A. J., Gaffney S. D. Effects of muscle damage on stretch-shortening cycle function and muscle stiffness control. Journal of Strength and Conditioning Research . 2004;18(4):771–776. doi: 10.1519/14343.1.
    1. Struzik A., Zawadzki J., Rokita A. Leg stiffness and potential energy in the countermovement phase and the CMJ jump height. Biomedical Human Kinetics . 2016;8(1):39–44. doi: 10.1515/bhk-2016-0006.
    1. Cornu C., Silveira M.-I. A., Goubel F. Influence of plyometric training on the mechanical impedance of the human ankle joint. European Journal of Applied Physiology . 1997;76(3):282–288. doi: 10.1007/s004210050249.
    1. Kubo K., Ikebukuro T., Maki A., Yata H., Tsunoda N. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. European Journal of Applied Physiology . 2012;112(7):2679–2691. doi: 10.1007/s00421-011-2248-x.
    1. Kubo K., Ikebukuro T., Yaeshima K., Yata H., Tsunoda N., Kanehisa H. Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. Journal of Applied Physiology . 2009;106(2):412–417. doi: 10.1152/japplphysiol.91381.2008.
    1. Kubo K., Kanehisa H., Fukunaga T. Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. Journal of Physiology . 2001;536(2):649–655. doi: 10.1111/j.1469-7793.2001.0649c.xd.
    1. Kubo K., Kanehisa H., Fukunaga T. Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. Journal of Physiology . 2002;538(1):219–226. doi: 10.1113/jphysiol.2001.012703.
    1. Kubo K., Kanehisa H., Kawakami Y., Fukunaga T. Influences of repetitive muscle contractions with different modes on tendon elasticity in vivo. Journal of Applied Physiology . 2001;91(1):277–282. doi: 10.1152/jappl.2001.91.1.277.
    1. Kubo K., Morimoto M., Komuro T., et al. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Medicine and Science in Sports and Exercise . 2007;39(10):1801–1810. doi: 10.1249/mss.0b013e31813e630a.
    1. Kubo K., Yata H., Kanehisa H., Fukunaga T. Effects of isometric squat training on the tendon stiffness and jump performance. European Journal of Applied Physiology . 2006;96(3):305–314. doi: 10.1007/s00421-005-0087-3.
    1. Mahieu N. N., Mcnair P., Cools A., D'Haen C., Vandermeulen K., Witvrouw E. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Medicine and Science in Sports and Exercise . 2008;40(1):117–123. doi: 10.1249/mss.0b013e3181599254.
    1. Pousson M., Van Hoecke J., Goubel F. Changes in elastic characteristics of human muscle induced by eccentric exercise. Journal of Biomechanics . 1990;23(4):343–348. doi: 10.1016/0021-9290(90)90062-8.
    1. Seynnes O. R., Erskine R. M., Maganaris C. N., et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. Journal of Applied Physiology . 2009;107(2):523–530. doi: 10.1152/japplphysiol.00213.2009.
    1. Arabatzi F., Kellis E. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. Journal of Strength and Conditioning Research . 2012;26(8):2192–2201. doi: 10.1519/JSC.0b013e31823b087a.
    1. Hunter J. P., Marshall R. N. Effects of power and flexibility training on vertical jump technique. Medicine and Science in Sports and Exercise . 2002;34(3):478–486. doi: 10.1097/00005768-200203000-00015.
    1. Kurtdere İ., Kurt C., Nebioglu İ. Ö. Acute static stretching with different volumes improves hamstring flexibility but not reactive strength index and leg stiffness in well-trained judo athletes. Journal of Human Sport and Exercise . 2021;16(4) doi: 10.14198/jhse.2021.164.03.
    1. Toumi H., Best T. M., Martin A., Poumarat G. Muscle plasticity after weight and combined (weight + jump) training. Medicine and Science in Sports and Exercise . 2004;36(9):1580–1588. doi: 10.1249/01.MSS.0000139896.73157.21.
    1. Chelly S. M., Denis C. Leg power and hopping stiffness: relationship with sprint running performance. Medicine and Science in Sports and Exercise . 2001;33(2):326–333. doi: 10.1097/00005768-200102000-00024.
    1. Bret C., Rahmani A., Dufour A.-B., Messonnier L., Lacour J.-R. Leg strength and stiffness as ability factors in 100 m sprint running. The Journal of Sports Medicine and Physical Fitness . 2002;42(3):274–281.
    1. Lorimer A. V., Keogh J. W. L., Hume P. A. Using stiffness to assess injury risk: comparison of methods for quantifying stiffness and their reliability in triathletes. PeerJ . 2018;6, article e5845 doi: 10.7717/peerj.5845.
    1. Page M. J., McKenzie J. E., Bossuyt P. M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Medical Journal . 2021;372, article n71
    1. Morin J.-B., Jeannin T., Chevallier B., Belli A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. International Journal of Sports Medicine . 2006;27(2):158–165. doi: 10.1055/s-2005-837569.
    1. Girard O., Brocherie F., Tomazin K., Farooq A., Morin J.-B. Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints. Journal of Biomechanics . 2016;49(9):1490–1497. doi: 10.1016/j.jbiomech.2016.03.020.
    1. Girard O., Brocherie F., Morin J.-B., Racinais S., Millet G. P., Périard J. D. Mechanical alterations associated with repeated treadmill sprinting under heat stress. PLoS ONE . 2017;12(2, article e0170679) doi: 10.1371/journal.pone.0170679.
    1. Paradisis G. P., Bissas A., Pappas P., Zacharogiannis E., Theodorou A., Girard O. Sprint mechanical differences at maximal running speed: effects of performance level. Journal of Sports Sciences . 2019;37(17):2026–2036. doi: 10.1080/02640414.2019.1616958.
    1. Kuitunen S., Komi P. V., Kyröläinen H. Knee and ankle joint stiffness in sprint running. Medicine and Science in Sports and Exercise . 2002;34(1):166–173. doi: 10.1097/00005768-200201000-00025.
    1. Cavagna G. A., Franzetti P., Heglund N. C., Willems P. The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. Journal of Physiology . 1988;399(1):81–92. doi: 10.1113/jphysiol.1988.sp017069.
    1. He J., Kram R., McMahon T. A. Mechanics of running under simulated low gravity. Journal of Applied Physiology . 1991;71(3):863–870. doi: 10.1152/jappl.1991.71.3.863.
    1. Arampatzis A., Brüggemann G.-P., Metzler V. The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics . 1999;32(12):1349–1353. doi: 10.1016/S0021-9290(99)00133-5.
    1. Cavagna G. A., Heglund N. C., Willems P. A. Effect of an increase in gravity on the power output and the rebound of the body in human running. Journal of Experimental Biology . 2005;208(12):2333–2346. doi: 10.1242/jeb.01661.
    1. Hobara H., Inoue K., Gomi K., et al. Continuous change in spring-mass characteristics during a 400 m sprint. Journal of Science and Medicine in Sport . 2010;13(2):256–261. doi: 10.1016/j.jsams.2009.02.002.
    1. Monte A., Muollo V., Nardello F., Zamparo P. Sprint running: how changes in step frequency affect running mechanics and leg spring behaviour at maximal speed. Journal of Sports Sciences . 2017;35(4):339–345. doi: 10.1080/02640414.2016.1164336.
    1. García-Pinillos F., García-Ramos A., Ramírez-Campillo R., Latorre-Román P. Á., Roche-Seruendo L. E. How do spatiotemporal parameters and lower-body stiffness change with increased running velocity? A comparison between novice and elite level runners. Journal of Human Kinetics . 2019;70(1):25–38. doi: 10.2478/hukin-2019-0036.
    1. Meyers R. W., Moeskops S., Oliver J. L., Hughes M. G., Cronin J. B., Lloyd R. S. Lower-limb stiffness and maximal sprint speed in 11-16-year-old boys. Journal of Strength and Conditioning Research . 2019;33(7):1987–1995. doi: 10.1519/JSC.0000000000002383.
    1. Monte A., Nardello F., Pavei G., et al. Mechanical determinants of the energy cost of running at the half-marathon pace. The Journal of Sports Medicine and Physical Fitness . 2020;60(2):198–205. doi: 10.23736/S0022-4707.19.09999-7.
    1. Cronin J. B., Rumpf M. C. Effect of four different step detection thresholds on nonmotorized treadmill sprint measurement. Journal of Strength and Conditioning Research . 2014;28(10):2996–3000. doi: 10.1519/JSC.0000000000000497.
    1. Rumpf M. C., Cronin J. B., Oliver J. L., Hughes M. G. Vertical and leg stiffness and stretch-shortening cycle changes across maturation during maximal sprint running. Human Movement Science . 2013;32(4):668–676. doi: 10.1016/j.humov.2013.01.006.
    1. Meyers R. W., Oliver J. L., Hughes M. G., Lloyd R. S., Cronin J. B. The influence of maturation on sprint performance in boys over a 21-month period. Medicine and Science in Sports and Exercise . 2016;48(12):2555–2562. doi: 10.1249/MSS.0000000000001049.
    1. Meyers R. W., Oliver J. L., Hughes M. G., Lloyd R. S., Cronin J. B. Asymmetry during maximal sprint performance in 11- to 16-year-old boys. Pediatric Exercise Science . 2017;29(1):94–102. doi: 10.1123/pes.2016-0018.
    1. Rumpf M. C., Cronin J. B., Mohamad I. N., Mohamad S., Oliver J. L., Hughes M. G. The effect of resisted sprint training on maximum sprint kinetics and kinematics in youth. European Journal of Sport Science . 2015;15(5):374–381. doi: 10.1080/17461391.2014.955125.
    1. Dalleau G., Belli A., Bourdin M., Lacour J.-R. The spring-mass model and the energy cost of treadmill running. European Journal of Applied Physiology and Occupational Physiology . 1998;77(3):257–263. doi: 10.1007/s004210050330.
    1. Heise G. D., Martin P. E. “Leg spring” characteristics and the aerobic demand of running. Medicine and Science in Sports and Exercise . 1998;30(5):750–754. doi: 10.1097/00005768-199805000-00017.
    1. Dutto D. J., Smith G. A. Changes in spring-mass characteristics during treadmill running to exhaustion. Medicine and Science in Sports and Exercise . 2002;34(8):1324–1331. doi: 10.1097/00005768-200208000-00014.
    1. Cherif A., Meeusen R., Farooq A., et al. Three days of intermittent fasting: repeated-sprint performance decreased by vertical-stiffness impairment. International Journal of Sports Physiology and Performance . 2017;12(3):287–294. doi: 10.1123/ijspp.2016-0125.
    1. Girard O., Racinais S., Kelly L., Millet G. P., Brocherie F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. European Journal of Applied Physiology . 2011;111(10):2547–2555. doi: 10.1007/s00421-011-1884-5.
    1. Girard O., Micallef J.-P., Millet G. P. Changes in spring-mass model characteristics during repeated running sprints. European Journal of Applied Physiology . 2011;111(1):125–134. doi: 10.1007/s00421-010-1638-9.
    1. Girard O., Brocherie F., Morin J.-B., Millet G. P. Mechanical alterations during interval-training treadmill runs in high-level male team-sport players. Journal of Science and Medicine in Sport . 2017;20(1):87–91. doi: 10.1016/j.jsams.2016.05.002.
    1. Brocherie F., Millet G. P., Girard O. Neuro-mechanical and metabolic adjustments to the repeated anaerobic sprint test in professional football players. European Journal of Applied Physiology . 2015;115(5):891–903. doi: 10.1007/s00421-014-3070-z.
    1. McMahon T. A., Valiant G., Frederick E. C. Groucho running. Journal of Applied Physiology . 1987;62(6):2326–2337. doi: 10.1152/jappl.1987.62.6.2326.
    1. Gindre C., Lussiana T., Hebert-Losier K., Mourot L. Aerial and terrestrial patterns: a novel approach to analyzing human running. International Journal of Sports Medicine . 2016;37(1):25–29. doi: 10.1055/s-0035-1555931.
    1. Lussiana T., Gindre C. Feel your stride and find your preferred running speed. Biology Open . 2016;5(1):45–48. doi: 10.1242/bio.014886.
    1. Lussiana T., Gindre C., Hébert-Losier K., Sagawa Y., Gimenez P., Mourot L. Similar running economy with different running patterns along the aerial-terrestrial continuum. International Journal of Sports Physiology and Performance . 2017;12(4):481–489. doi: 10.1123/ijspp.2016-0107.
    1. Rogers S. A., Whatman C. S., Pearson S. N., Kilding A. E. Assessments of mechanical stiffness and relationships to performance determinants in middle-distance runners. International Journal of Sports Physiology and Performance . 2017;12(10):1329–1334. doi: 10.1123/ijspp.2016-0594.
    1. Ferris D. P., Louie M., Farley C. T. Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society B: Biological Sciences . 1998;265(1400):989–994. doi: 10.1098/rspb.1998.0388.
    1. Ferris D. P., Liang K., Farley C. T. Runners adjust leg stiffness for their first step on a new running surface. Journal of Biomechanics . 1999;32(8):787–794. doi: 10.1016/S0021-9290(99)00078-0.
    1. McMahon T. A., Greene P. R. The influence of track compliance on running. Journal of Biomechanics . 1979;12(12):893–904. doi: 10.1016/0021-9290(79)90057-5.
    1. Stafilidis S., Arampatzis A. Track compliance does not affect sprinting performance. Journal of Sports Sciences . 2007;25(13):1479–1490. doi: 10.1080/02640410601150462.
    1. Girard O., Millet G., Slawinski J., Racinais S., Micallef J.-P. Modifications des caracteristiques du modele masse-ressort lors d'une course de 5000 m chez des athletes differemment entraines. Science & Sports . 2010;25(2):99–102. doi: 10.1016/j.scispo.2009.10.001.
    1. Morin J.-B., Tomazin K., Samozino P., Edouard P., Millet G. Y. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior. European Journal of Applied Physiology . 2012;112(4):1419–1428. doi: 10.1007/s00421-011-2103-0.
    1. Girard O., Millet G. P., Slawinski J., Racinais S., Micallef J. P. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. International Journal of Sports Medicine . 2013;34(9):832–840. doi: 10.1055/s-0032-1329958.
    1. le Meur Y., Thierry B., Rabita G., et al. Spring-mass behaviour during the run of an international triathlon competition. International Journal of Sports Medicine . 2013;34(8):748–755. doi: 10.1055/s-0032-1331205.
    1. Giovanelli N., Taboga P., Rejc E., Simunic B., Antonutto G., Lazzer S. Effects of an uphill marathon on running mechanics and lower-limb muscle fatigue. International Journal of Sports Physiology and Performance . 2016;11(4):522–529. doi: 10.1123/ijspp.2014-0602.
    1. Girard O., Millet G. P., Micallef J.-P. Mechanical alterations during 800-m self-paced track running. International Journal of Sports Medicine . 2017;38(4):314–321. doi: 10.1055/s-0042-121262.
    1. Bitchell C. L., McCarthy-Ryan M., Goom T., Moore I. S. Spring-mass characteristics during human locomotion: running experience and physiological considerations of blood lactate accumulation. European Journal of Sport Science . 2019;19(10):1328–1335. doi: 10.1080/17461391.2019.1609095.
    1. Weir G., Willwacher S., Trudeau M. B., Wyatt H., Hamill J. The influence of prolonged running and footwear on lower extremity joint stiffness. Medicine and Science in Sports and Exercise . 2020;52(12):2608–2614. doi: 10.1249/MSS.0000000000002416.
    1. Rabita G., Slawinski J., Girard O., Bignet F., Hausswirth C. Spring-mass behavior during exhaustive run at constant velocity in elite triathletes. Medicine and Science in Sports and Exercise . 2011;43(4):685–692. doi: 10.1249/MSS.0b013e3181fb3793.
    1. Rabita G., Couturier A., Dorel S., Hausswirth C., Le Meur Y. Changes in spring-mass behavior and muscle activity during an exhaustive run at V̇ _O_ 2max. Journal of Biomechanics . 2013;46(12):2011–2017. doi: 10.1016/j.jbiomech.2013.06.011.
    1. Hayes P. R., Caplan N. Leg stiffness decreases during a run to exhaustion at the speed at VO2max. European Journal of Sport Science . 2014;14(6):556–562. doi: 10.1080/17461391.2013.876102.
    1. Fourchet F., Girard O., Kelly L., Horobeanu C., Millet G. P. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. Journal of Science and Medicine in Sport . 2015;18(2):199–203. doi: 10.1016/j.jsams.2014.01.007.
    1. García-Pinillos F., Cartón-Llorente A., Jaén-Carrillo D., et al. Does fatigue alter step characteristics and stiffness during running? Gait and Posture . 2020;76:259–263. doi: 10.1016/j.gaitpost.2019.12.018.
    1. Li F., Newton R. U., Shi Y., Sutton D., Ding H. Correlation of eccentric strength, reactive strength, and leg stiffness with running economy in well-trained distance runners. Journal of Strength and Conditioning Research . 2021;35(6):1491–1499. doi: 10.1519/JSC.0000000000003446.
    1. Hunter I., Smith G. A. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. European Journal of Applied Physiology . 2007;100(6):653–661. doi: 10.1007/s00421-007-0456-1.
    1. Choukou M.-A., Laffaye G., Heugas-De Panafieu A.-M. Sprinter’s motor signature does not change with fatigue. European Journal of Applied Physiology . 2012;112(4):1557–1568. doi: 10.1007/s00421-011-2107-9.
    1. Dal Pupo J., Detanico D., Ache-Dias J., dos Santos S. G. The fatigue effect of a simulated futsal match protocol on sprint performance and kinematics of the lower limbs. Journal of Sports Sciences . 2017;35(1):81–88. doi: 10.1080/02640414.2016.1156727.
    1. Koike T., Yamada N. Mechanical advantages and disadvantages of a lower limb using forefoot to heel strike landing. Proceedings . 2020;49(1):p. 15. doi: 10.3390/proceedings2020049015.
    1. Yin L., Hu X., Lai Z., Liu K., Wang L. Leg stiffness and vertical stiffness of habitual forefoot and rearfoot strikers during running. Applied Bionics and Biomechanics . 2020;2020:6. doi: 10.1155/2020/8866340.8866340
    1. Liew B. X. W., Sullivan L., Morris S., Netto K. Lower-limb stiffness mediates speed but not turning angle during unplanned side-step cutting. Journal of Biomechanics . 2021;115:p. 110132. doi: 10.1016/j.jbiomech.2020.110132.
    1. Farley C. T., Houdijk H. H. P., Van Strien C., Louie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology . 1998;85(3):1044–1055. doi: 10.1152/jappl.1998.85.3.1044.
    1. Hamill J., Moses M., Seay J. Lower extremity joint stiffness in runners with low back pain. Research in Sports Medicine . 2009;17(4):260–273. doi: 10.1080/15438620903352057.
    1. Jin L., Hahn M. E. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds. Human Movement Science . 2018;58:1–9. doi: 10.1016/j.humov.2018.01.004.
    1. Shih Y. O., Teng H.-L., Powers C. M. Lower extremity stiffness predicts ground reaction force loading rate in heel strike runners. Medicine and Science in Sports and Exercise . 2019;51(8):1692–1697. doi: 10.1249/MSS.0000000000001963.
    1. Tam N., Santos-Concejero J., Coetzee D. R., Noakes T. D., Tucker R. Muscle co-activation and its influence on running performance and risk of injury in elite Kenyan runners. Journal of Sports Sciences . 2017;35(2):175–181. doi: 10.1080/02640414.2016.1159717.
    1. Verheul J., Clansey A. C., Lake M. J. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training. Journal of Applied Physiology . 2017;122(3):653–665. doi: 10.1152/japplphysiol.00801.2016.
    1. Stefanyshyn D. J., Nigg B. M. Dynamic angular stiffness of the ankle joint during running and sprinting. Journal of Applied Biomechanics . 1998;14(3):292–299. doi: 10.1123/jab.14.3.292.
    1. Mager F., Richards J., Hennies M., et al. Determination of ankle and metatarsophalangeal stiffness during walking and jogging. Journal of Applied Biomechanics . 2018;34(6):448–453. doi: 10.1123/jab.2017-0265.
    1. Aeles J., Jonkers I., Debaere S., Delecluse C., Vanwanseele B. Muscle–tendon unit length changes differ between young and adult sprinters in the first stance phase of sprint running. Royal Society Open Science . 2018;5(6):p. 180332. doi: 10.1098/rsos.180332.
    1. Charalambous L., Irwin G., Bezodis I. N., Kerwin D. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off. Journal of Sports Sciences . 2012;30(1):1–9. doi: 10.1080/02640414.2011.616948.
    1. Joseph C. W., Bradshaw E. J., Kemp J., Clark R. A. Musculoskeletal stiffness during hopping and running does not change following downhill backwards walking. Sports Biomechanics . 2014;13(3):241–258. doi: 10.1080/14763141.2014.914240.
    1. Günther M., Blickhan R. Joint stiffness of the ankle and the knee in running. Journal of Biomechanics . 2002;35(11):1459–1474. doi: 10.1016/S0021-9290(02)00183-5.
    1. Tam N., Tucker R., Santos-Concejero J., Prins D., Lamberts R. P. Running economy: neuromuscular and Joint-Stiffness contributions in trained runners. International Journal of Sports Physiology and Performance . 2019;14(1):16–22. doi: 10.1123/ijspp.2018-0151.
    1. Melcher D. A., Paquette M. R., Schilling B. K., Bloomer R. J. Joint stiffness and running economy during imposed forefoot strike before and after a long run in rearfoot strike runners. Journal of Sports Sciences . 2017;35(23):2297–2303. doi: 10.1080/02640414.2016.1266016.
    1. Hamill J., Gruber A. H., Derrick T. R. Lower extremity joint stiffness characteristics during running with different footfall patterns. European Journal of Sport Science . 2014;14(2):130–136. doi: 10.1080/17461391.2012.728249.
    1. Chan Z. Y. S., Zhang J. H., Ferber R., Shum G., Cheung R. T. H. The effects of midfoot strike gait retraining on impact loading and joint stiffness. Physical Therapy in Sport . 2020;42:139–145. doi: 10.1016/j.ptsp.2020.01.011.
    1. Nagahara R., Zushi K. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. The Journal of Sports Medicine and Physical Fitness . 2017;57(12):1572–1578. doi: 10.23736/S0022-4707.16.06622-6.
    1. Ache-Dias J., Pupo J. D., Dellagrana R. A., Teixeira A. S., Mochizuki L., Moro A. R. P. Effect of jump interval training on kinematics of the lower limbs and running economy. Journal of Strength and Conditioning Research . 2018;32(2):416–422. doi: 10.1519/JSC.0000000000002332.
    1. Lum D., Tan F., Pang J., Barbosa T. M. Effects of intermittent sprint and plyometric training on endurance running performance. Journal of Sport and Health Science . 2019;8(5):471–477. doi: 10.1016/j.jshs.2016.08.005.
    1. Roschel H., Barroso R., Tricoli V., et al. Effects of strength training associated with whole-body vibration training on running economy and vertical stiffness. Journal of Strength and Conditioning Research . 2015;29(8):2215–2220. doi: 10.1519/JSC.0000000000000857.
    1. Cavagna G. A., Komarek L., Mazzoleni S. The mechanics of sprint running. Journal of Physiology . 1971;217(3):709–721. doi: 10.1113/jphysiol.1971.sp009595.
    1. Hamner S. R., Seth A., Delp S. L. Muscle contributions to propulsion and support during running. Journal of Biomechanics . 2010;43(14):2709–2716. doi: 10.1016/j.jbiomech.2010.06.025.
    1. Ellis R. G., Sumner B. J., Kram R. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations. Gait and Posture . 2014;40(4):594–599. doi: 10.1016/j.gaitpost.2014.07.002.
    1. Lai A., Lichtwark G. A., Schache A. G., Lin Y. C., Brown N. A. T., Pandy M. G. In vivo behavior of the human soleus muscle with increasing walking and running speeds. Journal of Applied Physiology . 2015;118(10):1266–1275. doi: 10.1152/japplphysiol.00128.2015.
    1. Lee S. S. M., Piazza S. J. Built for speed: musculoskeletal structure and sprinting ability. Journal of Experimental Biology . 2009;212(22):3700–3707. doi: 10.1242/jeb.031096.
    1. Lichtwark G. A., Bougoulias K., Wilson A. M. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. Journal of Biomechanics . 2007;40(1):157–164. doi: 10.1016/j.jbiomech.2005.10.035.
    1. Lichtwark G. A., Wilson A. M. Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? Journal of Biomechanics . 2007;40(8):1768–1775. doi: 10.1016/j.jbiomech.2006.07.025.
    1. Avogadro P., Chaux C., Bourdin M., Dalleau G., Belli A. The use of treadmill ergometers for extensive calculation of external work and leg stiffness during running. European Journal of Applied Physiology . 2004;92(1-2):182–185. doi: 10.1007/s00421-004-1085-6.
    1. Morin J.-B., Dalleau G., Kyröläinen H., Jeannin T., Belli A. A simple method for measuring stiffness during running. Journal of Applied Biomechanics . 2005;21(2):167–180. doi: 10.1123/jab.21.2.167.
    1. Blum Y., Lipfert S. W., Seyfarth A. Effective leg stiffness in running. Journal of Biomechanics . 2009;42(14):2400–2405. doi: 10.1016/j.jbiomech.2009.06.040.
    1. Coleman D. R., Cannavan D., Horne S., Blazevich A. J. Leg stiffness in human running: Comparison of estimates derived from previously published models to direct kinematic-kinetic measures. Journal of Biomechanics . 2012;45(11):1987–1991. doi: 10.1016/j.jbiomech.2012.05.010.
    1. Hobara H., Inoue K., Kobayashi Y., Ogata T. A comparison of computation methods for leg stiffness during hopping. Journal of Applied Biomechanics . 2014;30(1):154–159. doi: 10.1123/jab.2012-0285.
    1. Liew B. X. W., Morris S., Masters A., Netto K. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running. Journal of Biomechanics . 2017;64:253–257. doi: 10.1016/j.jbiomech.2017.09.028.
    1. Riley P. O., Dicharry J., Franz J., Croce U. D., Wilder R. P., Kerrigan D. C. A kinematics and kinetic comparison of overground and treadmill running. Medicine and Science in Sports and Exercise . 2008;40(6):1093–1100. doi: 10.1249/MSS.0b013e3181677530.
    1. Sinclair J., Shore H. F., Taylor P. J., Atkins S. Sex differences in limb and joint stiffness in recreational runners. Human Movement . 2015;16(3):137–141. doi: 10.1515/humo-2015-0039.
    1. Vincent H. K., Kilgore J. E., 3rd, Chen C., Bruner M., Horodyski M. B., Vincent K. R. Impact of body mass index on biomechanics of recreational runners. PM & R : The Journal of Injury, Function, and Rehabilitation . 2020;12(11):1106–1112. doi: 10.1002/pmrj.12335.
    1. Pappas P., Paradisis G., Tsolakis C., Smirniotou A., Morin J.-B. Reliabilities of leg and vertical stiffness during treadmill running. Sports Biomechanics . 2014;13(4):391–399. doi: 10.1080/14763141.2014.981853.
    1. Joseph C. W., Bradshaw E. J., Kemp J., Clark R. A. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. Journal of Applied Biomechanics . 2013;29(4):386–394. doi: 10.1123/jab.29.4.386.
    1. Hermens H. J., Freriks B. Seniam. European Recommendations for Surface ElectroMyoGraphy . 1999.
    1. Girard O., Brocherie F., Morin J.-B., Degache F., Millet G. P. Comparison of four sections for analyzing running mechanics alterations during repeated treadmill sprints. Journal of Applied Biomechanics . 2015;31(5):389–395. doi: 10.1123/jab.2015-0049.
    1. Struzik A., Konieczny G., Grzesik K., Stawarz M., Winiarski S., Rokita A. Relationship between lower limbs kinematic variables and effectiveness of sprint during maximum velocity phase. Acta of Bioengineering and Biomechanics . 2015;17(4):131–138.
    1. Struzik A., Konieczny G., Stawarz M., Grzesik K., Winiarski S., Rokita A. Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase. Applied Bionics and Biomechanics . 2016;2016:9. doi: 10.1155/2016/7480709.7480709
    1. Novacheck T. F. The biomechanics of running. Gait and Posture . 1998;7(1):77–95. doi: 10.1016/S0966-6362(97)00038-6.
    1. Struzik A., Zawadzki J., Rokita A., Pietraszewski B. Application of an accelerometric system for determination of stiffness during a hopping task. Applied Bionics and Biomechanics . 2020;2020:9. doi: 10.1155/2020/3826503.3826503
    1. Gill N., Preece S. J., Baker R. Using the spring-mass model for running: force-length curves and foot-strike patterns. Gait and Posture . 2020;80:318–323. doi: 10.1016/j.gaitpost.2020.06.023.
    1. Luhtanen P., Komi P. V. Force-, power-, and elasticity-velocity relationships in walking, running, and jumping. European Journal of Applied Physiology and Occupational Physiology . 1980;44(3):279–289. doi: 10.1007/BF00421627.
    1. Hunter I. A new approach to modeling vertical stiffness in heel-toe distance runners. Journal of Sports Science and Medicine . 2003;2(4):139–143.
    1. Lockie R. G., Murphy A. J., Knight T. J., Janse de Jonge X. A. K. Factors that differentiate acceleration ability in field sport athletes. Journal of Strength and Conditioning Research . 2011;25(10):2704–2714. doi: 10.1519/JSC.0b013e31820d9f17.
    1. Modric T., Versic S., Sekulic D., Liposek S. Analysis of the association between running performance and game performance indicators in professional soccer players. International Journal of Environmental Research and Public Health . 2019;16(20):p. 4032. doi: 10.3390/ijerph16204032.
    1. Cronin J. B., Hansen K. T. Strength and power predictors of sports speed. Journal of Strength and Conditioning Research . 2005;19(2):349–357. doi: 10.1519/14323.1.
    1. Barr M. J., Sheppard J. M., Newton R. U. Sprinting kinematics of elite rugby players. Journal of Australian Strength and Conditioning . 2013;21(4):14–20.
    1. Baltich J., Maurer C., Nigg B. M. Increased vertical impact forces and altered running mechanics with softer midsole shoes. PLoS ONE . 2015;10(4, article e0125196) doi: 10.1371/journal.pone.0125196.
    1. Apps C., Sterzing T., O'Brien T., Lake M. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion. Journal of Electromyography and Kinesiology . 2016;31:55–62. doi: 10.1016/j.jelekin.2016.09.003.
    1. Warne J. P., Smyth B. P., Fagan J. O.’. C., et al. Kinetic changes during a six-week minimal footwear and gait-retraining intervention in runners. Journal of Sports Sciences . 2017;35(15):1538–1546. doi: 10.1080/02640414.2016.1224916.
    1. Sinclair J., Atkins S., Taylor P. J. The effects of barefoot and shod running on limb and joint stiffness characteristics in recreational runners. Journal of Motor Behavior . 2016;48(1):79–85. doi: 10.1080/00222895.2015.1044493.
    1. Williams D. S., 3rd, Davis I. M. C., Scholz J. P., Hamill J., Buchanan T. S. High-arched runners exhibit increased leg stiffness compared to low-arched runners. Gait and Posture . 2004;19(3):263–269. doi: 10.1016/S0966-6362(03)00087-0.
    1. Powell D. W., Williams D. S. B., 3rd, Windsor B., Butler R. J., Zhang S. Ankle work and dynamic joint stiffness in high- compared to low-arched athletes during a barefoot running task. Human Movement Science . 2014;34:147–156. doi: 10.1016/j.humov.2014.01.007.
    1. Powell D. W., Paquette M. R., Blaise Williams D. S., 3rd Contributions to leg stiffness in high- compared with low-arched athletes. Medicine and Science in Sports and Exercise . 2017;49(8):1662–1667. doi: 10.1249/MSS.0000000000001279.
    1. Hollander K., Zech A., Rahlf A. L., Orendurff M. S., Stebbins J., Heidt C. The relationship between static and dynamic foot posture and running biomechanics: a systematic review and meta-analysis. Gait and Posture . 2019;72:109–122. doi: 10.1016/j.gaitpost.2019.05.031.
    1. Renshaw I., Chow J. Y., Davids K., Hammond J. A constraints-led perspective to understanding skill acquisition and game play: a basis for integration of motor learning theory and physical education praxis? Physical Education and Sport Pedagogy . 2010;15(2):117–137. doi: 10.1080/17408980902791586.
    1. Taylor M. J. D., Beneke R. Spring mass characteristics of the fastest men on Earth. International Journal of Sports Medicine . 2012;33(8):667–670. doi: 10.1055/s-0032-1306283.
    1. Giovanelli N., Taboga P., Lazzer S. Changes in running mechanics during a 6-hour running race. International Journal of Sports Physiology and Performance . 2017;12(5):642–647. doi: 10.1123/ijspp.2016-0135.

Source: PubMed

3
Tilaa