Novel Perspectives Regarding the Pathology, Inflammation, and Biomarkers of Acute Respiratory Distress Syndrome

Pradeesh Sivapalan, Barbara Bonnesen, Jens-Ulrik Jensen, Pradeesh Sivapalan, Barbara Bonnesen, Jens-Ulrik Jensen

Abstract

Acute respiratory distress syndrome (ARDS) is an acute inflammation of the lung resulting from damage to the alveolar-capillary membrane, and it is diagnosed using a combination of clinical and physiological variables. ARDS develops in approximately 10% of hospitalised patients with pneumonia and has a mortality rate of approximately 40%. Recent research has identified several biomarkers associated with ARDS pathophysiology, and these may be useful for diagnosing and monitoring ARDS. They may also highlight potential therapeutic targets. This review summarises our current understanding of those clinical biomarkers: (1) biomarkers of alveolar and bronchiolar injury, (2) biomarkers of endothelial damage and coagulation, and (3) biomarkers for treatment responses.

Keywords: acute respiratory distress syndrome; biomarkers; inflammation; molecular pathway; therapeutics.

Conflict of interest statement

All authors have completed the ICMJE uniform disclosure form, describing any conflicts of interest. None of the authors have any conflicts of interest that are directly related to this work.

Figures

Figure 1
Figure 1
Biomarkers of acute respiratory distress syndrome organised in alveolar/bronchiolar damage, inflammatory response, coagulation, and endothelial damage.

References

    1. Fan E., Brodie D., Slutsky A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA. 2018;319:698–710. doi: 10.1001/jama.2017.21907.
    1. Han S., Mallampalli R.K. The acute respiratory distress syndrome: From mechanism to translation. J. Immunol. 2015;194:855–860. doi: 10.4049/jimmunol.1402513.
    1. Force A.D.T., Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., Van Haren F., Larsson A., McAuley D.F., et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Crouch E. Structure, biologic properties, and expression of surfactant protein D (SP-D) Biochim. Biophys. Acta. 1998;1408:278–289. doi: 10.1016/S0925-4439(98)00073-8.
    1. Eisner M.D., Parsons P., Matthay M.A., Ware L., Greene K. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983–988. doi: 10.1136/thorax.58.11.983.
    1. Determann R.M., Royakkers A.A.N.M., Haitsma J.J., Zhang H., Slutsky M.A.S., Ranieri V.M., Schultz M.J. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulm. Med. 2010;10:6. doi: 10.1186/1471-2466-10-6.
    1. Ware L.B., Koyama T., Billheimer D.D., Wu W., Bernard G.R., Thompson B.T., Brower R.G., Standiford T.J., Martin T.R., Matthay M.A. Prognostic and Pathogenetic Value of Combining Clinical and Biochemical Indices in Patients With Acute Lung Injury. Chest. 2010;137:288–296. doi: 10.1378/chest.09-1484.
    1. Calfee C.S., Ware L.B., Glidden D.V., Eisner M.D., Parsons P.E., Thompson B.T., Matthay M.A. Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit. Care Med. 2011;39:711–717. doi: 10.1097/CCM.0b013e318207ec3c.
    1. Zhao Z., Wickersham N., Kangelaris K.N., May A.K., Bernard G.R., Matthay M.A., Calfee C.S., Koyama T., Ware L.B. External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome. Intensive Care Med. 2017;43:1123–1131. doi: 10.1007/s00134-017-4854-5.
    1. Park J., Pabón M.A., Choi A.M.K., Siembos I., Fredenburgh L.E., Baron R.M., Jeon K., Chung C.R., Yang J.H., Park C.-M., et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: Validation in US and Korean cohorts. BMC Pulm. Med. 2017;17:204. doi: 10.1186/s12890-017-0532-1.
    1. Ware L.B., Koyama T., Zhao Z., Janz D.R., Wickersham N., Bernard G.R., May A.K., Calfee C.S., Matthay M.A. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit. Care. 2013;17:R253. doi: 10.1186/cc13080.
    1. Fujiwara Y., Kiura K., Toyooka S., Hotta K., Tabata M., Takigawa N., Soh J., Tanimoto Y., Kanehiro A., Kato K., et al. Elevated serum level of sialylated glycoprotein KL-6 predicts a poor prognosis in patients with non-small cell lung cancer treated with gefitinib. Lung Cancer. 2008;59:81–87. doi: 10.1016/j.lungcan.2007.07.018.
    1. Ishikawa N., Hattori N., Yokoyama A., Tanaka S., Nishino R., Yoshioka K., Ohshimo S., Fujitaka K., Ohnishi H., Hamada H., et al. Usefulness of monitoring the circulating Krebs von den Lungen-6 levels to predict the clinical outcome of patients with advanced nonsmall cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Int. J. Cancer. 2008;122:2612–2620. doi: 10.1002/ijc.23411.
    1. Tomita M., Ayabe T., Chosa E., Nose N., Nakamura K. Prognostic significance of preoperative serum Krebs von den Lungen-6 level in non-small cell lung cancer. Gen. Thorac. Cardiovasc. Surg. 2016;64:657–661. doi: 10.1007/s11748-016-0706-4.
    1. Tomita M., Ayabe T., Chosa E., Nose N., Nakamura K. Prognostic Significance of a Tumor Marker Index Based on Preoperative Serum Carcinoembryonic Antigen and Krebs von den Lungen-6 Levels in Non-Small Cell Lung Cancer. Asian Pac. J. Cancer Prev. 2017;18:287–291.
    1. Collard H.R., Calfee C.S., Wolters P.J., Song J.W., Hong S.-B., Brady S., Ishizaka A., Jones K.D., King T.E., Matthay M.A., et al. Plasma biomarker profiles in acute exacerbation of idiopathic pulmonary fibrosis. Am. J. Physiol. Cell. Mol. Physiol. 2010;299:L3–L7. doi: 10.1152/ajplung.90637.2008.
    1. Aihara K., Oga T., Harada Y., Chihara Y., Handa T., Tanizawa K., Watanabe K., Tsuboi T., Hitomi T., Mishima M., et al. Comparison of biomarkers of subclinical lung injury in obstructive sleep apnea. Respir. Med. 2011;105:939–945. doi: 10.1016/j.rmed.2011.02.016.
    1. Lederer D.J., Jelic S., Basner R.C., Ishizaka A., Bhattacharya J. Circulating KL-6, a biomarker of lung injury, in obstructive sleep apnoea. Eur. Respir. J. 2009;33:793–796. doi: 10.1183/09031936.00150708.
    1. Ishizaka A., Matsuda T., Albertine K.H., Koh H., Tasaka S., Hasegawa N., Kohno N., Kotani T., Morisaki H., Takeda J., et al. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am. J. Physiol. Cell. Mol. Physiol. 2004;286:L1088–L1094. doi: 10.1152/ajplung.00420.2002.
    1. Nathani N., Perkins G., Tunnicliffe W., Murphy N., Manji M., Thickett D.R. Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome. Crit. Care. 2008;12:R12. doi: 10.1186/cc6785.
    1. Koyama K., Katayama S., Tonai K., Shima J., Koinuma T., Nunomiya S. Biomarker profiles of coagulopathy and alveolar epithelial injury in acute respiratory distress syndrome with idiopathic/immune-related disease or common direct risk factors. Crit. Care. 2019;23:283. doi: 10.1186/s13054-019-2559-6.
    1. Yeh L.-C., Huang P.-W., Hsieh K.-H., Wang C.-H., Kao Y.-K., Lin T.-H., Lee X.-L. Elevated Plasma Levels of Gas6 Are Associated with Acute Lung Injury in Patients with Severe Sepsis. Tohoku J. Exp. Med. 2017;243:187–193. doi: 10.1620/tjem.243.187.
    1. Agrawal A., Matthay M.A., Kangelaris K.N., Stein J., Chu J.C., Imp B.M., Cortez A., Abbott J., Liu K.D., Calfee C.S. Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2013;187:736–742. doi: 10.1164/rccm.201208-1460OC.
    1. Jabaudon M., Berthelin P., Pranal T., Roszyk L., Godet T., Faure J.-S., Chabanne R., Eisenmann N., Lautrette A., Belville C., et al. Receptor for advanced glycation end-products and ARDS prediction: A multicentre observational study. Sci. Rep. 2018;8:2603. doi: 10.1038/s41598-018-20994-x.
    1. Jabaudon M., Blondonnet R., Pereira B., Cartin-Ceba R., Lichtenstern C., Mauri T., Determann R.M., Drabek T., Hubmayr R.D., Gajic O., et al. Plasma sRAGE is independently associated with increased mortality in ARDS: A meta-analysis of individual patient data. Intensive Care Med. 2018;44:1388–1399. doi: 10.1007/s00134-018-5327-1.
    1. Calfee C.S., Ware L.B., Eisner M.D., Parsons P.E., Thompson B.T., Wickersham N., Matthay M.A., Network T.N.A. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax. 2008;63:1083–1089. doi: 10.1136/thx.2008.095588.
    1. Brodska H., Malickova K., Valenta J., Fabio A., Drabek T. Soluble receptor for advanced glycation end products predicts 28-day mortality in critically ill patients with sepsis. Scand. J. Clin. Lab. Investig. 2013;73:650–660. doi: 10.3109/00365513.2013.849357.
    1. Mauri T., Masson S., Pradella A., Bellani G., Coppadoro A., Bombino M., Valentino S., Patroniti N., Mantovani A., Pesenti A., et al. Elevated Plasma and Alveolar Levels of Soluble Receptor for Advanced Glycation Endproducts Are Associated with Severity of Lung Dysfunction in ARDS Patients. Tohoku J. Exp. Med. 2010;222:105–112. doi: 10.1620/tjem.222.105.
    1. Cartin-Ceba R., Hubmayr R.D., Qin R., Peters S., Determann R.M., Schultz M.J., Gajic O.O. Predictive value of plasma biomarkers for mortality and organ failure development in patients with acute respiratory distress syndrome. J. Crit. Care. 2015;30:219.e1–219.e7. doi: 10.1016/j.jcrc.2014.09.001.
    1. Mrozek S., Jabaudon M., Jaber S., Paugam-Burtz C., Lefrant J.Y., Rouby J.J., Asehnoune K., Allaouchiche B., Baldesi O., Leone M., et al. Elevated Plasma Levels of sRAGE Are Associated With Nonfocal CT-Based Lung Imaging in Patients With ARDS: A Prospective Multicenter Study. Chest. 2016;150:998–1007. doi: 10.1016/j.chest.2016.03.016.
    1. Jabaudon M., Futier E., Roszyk L., Chalus E., Guérin R., Petit A., Mrozek S., Perbet S., Cayot-Constantin S., Chartier C., et al. Soluble form of the receptor for advanced glycation end products is a marker of acute lung injury but not of severe sepsis in critically ill patients*. Crit. Care Med. 2011;39:480–488. doi: 10.1097/CCM.0b013e318206b3ca.
    1. Jabaudon M., Blondonnet R., Roszyk L., Pereira B., Guérin R., Perbet S., Cayot S., Bouvier D., Blanchon L., Sapin V., et al. Soluble Forms and Ligands of the Receptor for Advanced Glycation End-Products in Patients with Acute Respiratory Distress Syndrome: An Observational Prospective Study. PLoS ONE. 2015;10:e0135857. doi: 10.1371/journal.pone.0135857.
    1. Levy B., Acute Respiratory Distress Syndrome Network. Brower R.G., Matthay M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A. Faculty Opinions recommendation of Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2016;342:1301–1308. doi: 10.3410/f.718724249.793516458.
    1. Spadaro S., Park M., Turrini C., Tunstall T., Thwaites R.S., Mauri T., Ragazzi R., Ruggeri P., Hansel T.T., Caramori G., et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J. Inflamm. 2019;16:1–11. doi: 10.1186/s12950-018-0202-y.
    1. Kwiatkowski D.J., Mehl R., Izumo S., Nadal-Ginard B., Yin H.L. Muscle is the major source of plasma gelsolin. J. Biol. Chem. 1988;263:8239–8243.
    1. Holm F.S., Sivapalan P., Seersholm N., Itenov T.S., Christensen P.H., Jensen J.S. Acute Lung Injury in Critically Ill Patients: Actin-Scavenger Gelsolin Signals Prolonged Respiratory Failure. Shock. 2019;52:370–377. doi: 10.1097/SHK.0000000000001279.
    1. Hou P.C., Filbin M.R., Wang H., Ngo L., Huang D.T., Aird W.C., Yealy D.M., Angus D.C., Kellum J.A., Shapiro N.I., et al. Endothelial Permeability and Hemostasis in Septic Shock: Results From the ProCESS Trial. Chest. 2017;152:22–31. doi: 10.1016/j.chest.2017.01.010.
    1. Sapru A., Network T.N.A., Calfee C.S., Liu K.D., Kangelaris K., Hansen H., Pawlikowska L., Ware L.B., Alkhouli M.F., Abbott J., et al. Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med. 2015;41:470–478. doi: 10.1007/s00134-015-3648-x.
    1. Johansen M.E., Johansson P.I., Ostrowski S.R., Bestle M.H., Hein L., Jensen A.L., Søe-Jensen P., Andersen M.H., Steensen M., Mohr T., et al. Profound endothelial damage predicts impending organ failure and death in sepsis. Semin. Thromb. Hemost. 2015;41:16–25. doi: 10.1055/s-0034-1398377.
    1. Agrawal A., Zhuo H., Brady S., Levitt J., Steingrub J., Siegel M.D., Soto G., Peterson M.W., Chesnutt M.S., Matthay M.A., et al. Pathogenetic and predictive value of biomarkers in patients with ALI and lower severity of illness: Results from two clinical trials. Am. J. Physiol. Cell. Mol. Physiol. 2012;303:L634–L639. doi: 10.1152/ajplung.00195.2012.
    1. McClintock D., Zhuo H., Wickersham N., Matthay M.A., Ware L.B. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit. Care. 2008;12:R41. doi: 10.1186/cc6846.
    1. Shorr A.F., Nelson D.R., Wyncoll D., Reinhart K., Brunkhorst F.M., Vail G.M., Janes J.M. Protein C: A potential biomarker in severe sepsis and a possible tool for monitoring treatment with drotrecogin alfa (activated) Crit. Care. 2008;12:R45. doi: 10.1186/cc6854.
    1. Fang Y., Li C., Shao R., Yu H., Zhang Q., Zhao L. Prognostic significance of the angiopoietin-2/angiopoietin-1 and angiopoietin-1/Tie-2 ratios for early sepsis in an emergency department. Crit Care. 2015;19:367. doi: 10.1186/s13054-015-1075-6.
    1. Tsangaris I., Tsantes A., Vrigkou E., Kopterides P., Pelekanou A., Zerva K., Antonakos G., Konstantonis D., Mavrou I., Tsaknis G., et al. Angiopoietin-2 Levels as Predictors of Outcome in Mechanically Ventilated Patients with Acute Respiratory Distress Syndrome. Dis. Markers. 2017;2017:6758721. doi: 10.1155/2017/6758721.
    1. Ying J., Zhou D., Gu T., Huang J. Endocan, a Risk Factor for Developing Acute Respiratory Distress Syndrome among Severe Pneumonia Patients. Can. Respir. J. 2019;2019:2476845. doi: 10.1155/2019/2476845.
    1. Gaudet A., Parmentier E., Dubucquoi S., Poissy J., Duburcq T., Lassalle P., Caires N.D.F., Mathieu D. Low endocan levels are predictive of Acute Respiratory Distress Syndrome in severe sepsis and septic shock. J. Crit. Care. 2018;47:121–126. doi: 10.1016/j.jcrc.2018.06.018.
    1. Mikkelsen M.E., Shah C.V., Scherpereel A., Lanken P.N., Lassalle P., Bellamy S.L., Localio A.R., Albelda S.M., Meyer N.J., Christie J.D. Lower serum endocan levels are associated with the development of acute lung injury after major trauma. J. Crit Care. 2012;27:522.e11–522.e17. doi: 10.1016/j.jcrc.2011.07.077.
    1. Orbegozo D., Rahmania L.L., Irazabal M.M., Mendoza M.M., Annoni F., De Backer D., Creteur J., Vincent J.-L. Endocan as an early biomarker of severity in patients with acute respiratory distress syndrome. Ann. Intensive Care. 2017;7:1–8. doi: 10.1186/s13613-017-0311-4.
    1. Tang L., Zhao Y., Wang D., Deng W., Li C., Li Q., Huang S., Shu C. Endocan Levels in Peripheral Blood Predict Outcomes of Acute Respiratory Distress Syndrome. Mediat. Inflamm. 2014;2014:625180. doi: 10.1155/2014/625180.
    1. Mangat M., Amalakuhan B., Habib S., Reyes L.F., Hinojosa C.A., Rodriguez A.H., Soni N.J., Anzueto A., Levine S.M., Peters J.I., et al. High endocan levels are associated with the need for mechanical ventilation among patients with severe sepsis. Eur. Respir. J. 2017;50:1700013. doi: 10.1183/13993003.00013-2017.
    1. Ioakeimidou A., Pagalou E., Kontogiorgi M., Antoniadou E., Kaziani K., Psaroulis K., Giamarellos-Bourboulis E.J., Prekates A., Antonakos N., Lassale P., et al. Increase of circulating endocan over sepsis follow-up is associated with progression into organ dysfunction. Eur. J. Clin. Microbiol. Infect. Dis. 2017;36:1749–1756. doi: 10.1007/s10096-017-2988-6.
    1. Wenzel C., Kofler J., Locker G.J., Laczika K., Quehenberger P., Frass M., Knöbl P. Endothelial cell activation and blood coagulation in critically ill patients with lung injury. Wien. Klin. Wochenschr. 2002;114:853–858.
    1. Yadav H., Bartley A., Keating S.M., Meade L.A., Norris P.J., Carter R., Gajic O.O., Kor D.J. Evolution of Validated Biomarkers and Intraoperative Parameters in the Development of Postoperative ARDS. Respir. Care. 2018;63:1331–1340. doi: 10.4187/respcare.06103.
    1. Moalli R., Doyle J.M., Tahhan H.R., Hasan F.M., Braman S.S., Saldeen T. Fibrinolysis in critically ill patients. Am. Rev. Respir Dis. 1989;140:287–293. doi: 10.1164/ajrccm/140.2.287.
    1. El Solh A.A., Bhora M., Pineda L., Aquilina A., Abbetessa L., Berbary E. Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis. Intensive Care Med. 2006;32:110–115. doi: 10.1007/s00134-005-2847-2.
    1. Thurston G., Daly C. The Complex Role of Angiopoietin-2 in the Angiopoietin-Tie Signaling Pathway. Cold Spring Harb. Perspect. Med. 2012;2:a006650. doi: 10.1101/cshperspect.a006650.
    1. Ware L.B., Zhao Z., Koyama T., Brown R.M., Semler M.W., Janz D.R., May A.K., Fremont R.D., Matthay M.A., Cohen M.J., et al. Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries. Trauma Surg. Acute Care Open. 2017;2:e000121. doi: 10.1136/tsaco-2017-000121.
    1. Asahara H., Ito H., Yamamoto H., Ohno N., Asahara M., Yamada Y., Yamaguchi O., Tomita M., Makita K. Elevated Levels of Angiopoietin-2 as a Biomarker for Respiratory Failure After Cardiac Surgery. J. Cardiothorac. Vasc. Anesthesia. 2014;28:1293–1301. doi: 10.1053/j.jvca.2014.03.004.
    1. Van der Heijden M., Pickkers P., van Nieuw Amerongen G.P., van Hinsbergh V.W., Bouw M.P., van der Hoeven J.G., Groeneveld A.J. Circulating angiopoietin-2 levels in the course of septic shock: Relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med. 2009;35:1567–1574. doi: 10.1007/s00134-009-1560-y.
    1. Hoeboer S.H., Groeneveld A.J., Van Der Heijden M., Straaten H.M.O.-V. Serial inflammatory biomarkers of the severity, course and outcome of late onset acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new-onset fever. Biomark. Med. 2015;9:605–616. doi: 10.2217/bmm.15.15.
    1. Bime C., Casanova N., Oita R.C., Ndukum J., Lynn H., Camp S.M., Lussier Y., Abraham I., Carter D., Miller E.J., et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit. Care. 2019;23:1–8. doi: 10.1186/s13054-019-2697-x.
    1. Gallagher D.C., Parikh S.M., Balonov K., Miller A., Gautam S., Talmor D., Sukhatme V.P. Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock. 2007;29:656–661. doi: 10.1097/shk.0b013e31815dd92f.
    1. Ma S., Zhao M.-L., Wang K., Yue Y.-F., Sun R.-Q., Zhang R.-M., Wang S.-F., Sun G., Xie H.-Q., Yu Y., et al. Association of Ang-2, vWF, and EVLWI with risk of mortality in sepsis patients with concomitant ARDS: A retrospective study. J. Formos. Med. Assoc. 2020;119:950–956. doi: 10.1016/j.jfma.2019.11.005.
    1. Liu X.-W., Ma T., Cai Q., Wang L., Song H.-W., Liu Z. Elevation of Serum PARK7 and IL-8 Levels Is Associated With Acute Lung Injury in Patients With Severe Sepsis/Septic Shock. J. Intensive Care Med. 2017;34:662–668. doi: 10.1177/0885066617709689.
    1. Ware L.B., Eisner M.D., Thompson B.T., Parsons P.E., Matthay M.A. Significance of Von Willebrand Factor in Septic and Nonseptic Patients with Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2004;170:766–772. doi: 10.1164/rccm.200310-1434OC.
    1. Singh D., Kolsum U., Brightling C.E., Locantore N., Agusti A., Tal-Singer R. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014;44:1697–1700. doi: 10.1183/09031936.00162414.
    1. Tashkin D.P., E Wechsler M. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2018;13:335–349. doi: 10.2147/COPD.S152291.
    1. Barnes P.J. Inflammatory endotypes in COPD. Allergy. 2019;74:1249–1256. doi: 10.1111/all.13760.
    1. Pascoe S., Locantore N., Dransfield M.T., Barnes N.C., Pavord I.D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: A secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 2015;3:435–442. doi: 10.1016/S2213-2600(15)00106-X.
    1. Vedel-Krogh S., Nielsen S.F., Lange P., Vestbo J., Nordestgaard B.G. Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2016;193:965–974. doi: 10.1164/rccm.201509-1869OC.
    1. Couillard S., Larivée P., Courteau J., Vanasse A. Eosinophils in COPD Exacerbations Are Associated With Increased Readmissions. Chest. 2017;151:366–373. doi: 10.1016/j.chest.2016.10.003.
    1. Zeiger R., Tran T.N., Butler R.K., Schatz M., Li Q., Khatry D.B., Martin U., Kawatkar A.A., Chen W. Relationship of Blood Eosinophil Count to Exacerbations in Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. Pract. 2018;6:944–954.e5. doi: 10.1016/j.jaip.2017.10.004.
    1. Yun J.H., Lamb A., Chase R., Singh D., Parker M.M., Saferali A., Vestbo J., Tal-Singer R., Castaldi P.J., Silverman E.K., et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2018;141:2037–2047. doi: 10.1016/j.jaci.2018.04.010.
    1. Russell R.E.K., Bafadhel M. Investigating blood eosinophil count thresholds in patients with COPD. Lancet Respir. Med. 2018;6:823–824. doi: 10.1016/S2213-2600(18)30415-6.
    1. Vogelmeier C.F., Criner G.J., Martinez F.J., Anzueto A., Barnes P.J., Bourbeau J., Celli B.R., Chen R., Decramer M., Fabbri L.M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017;195:557–582. doi: 10.1164/rccm.201701-0218PP.
    1. Walters J.A.E., Tan D.J., White C.J., Gibson P.G., Wood-Baker R., Walters E.H. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2014;2014:CD001288. doi: 10.1002/14651858.CD001288.pub4.
    1. Singh D., Agusti A., Anzueto A., Barnes P.J., Bourbeau J., Celli B., Criner G.J., Frith P., Halpin D.M.G., Han M., et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019;53:1900164. doi: 10.1183/13993003.00164-2019.
    1. Sivapalan P., Ingebrigtsen T.S., Rasmussen D.B., Sørensen R., Rasmussen C.M., Jensen C.B., Allin K.H., Eklöf J., Seersholm N., Vestbo J., et al. COPD exacerbations: The impact of long versus short courses of oral corticosteroids on mortality and pneumonia: Nationwide data on 67 000 patients with COPD followed for 12 months. BMJ Open Respir. Res. 2019;6:e000407. doi: 10.1136/bmjresp-2019-000407.
    1. Waljee A.K., Rogers M.A.M., Lin P., Singal A.G., Stein J.D., Marks R.M., Ayanian J.Z., Nallamothu B.K. Short term use of oral corticosteroids and related harms among adults in the United States: Population based cohort study. BMJ. 2017;357:j1415. doi: 10.1136/bmj.j1415.
    1. Walsh L.J., A Wong C., Oborne J., Cooper S., A Lewis S., Pringle M., Hubbard R., E Tattersfield A. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56:279–284. doi: 10.1136/thorax.56.4.279.
    1. Bafadhel M., McKenna S., Terry S., Mistry V., Pancholi M., Venge P., Lomas D.A., Barer M.R., Johnston S.L., Pavord I.D., et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: A randomized placebo-controlled trial. Am. J. Respir Crit Care Med. 2012;186:48–55. doi: 10.1164/rccm.201108-1553OC.
    1. Serafino-Agrusa L., Scichilone N., Spatafora M., Battaglia S. Blood eosinophils and treatment response in hospitalized exacerbations of chronic obstructive pulmonary disease: A case-control study. Pulm. Pharmacol. Ther. 2016;37:89–94. doi: 10.1016/j.pupt.2016.03.004.
    1. Duman D., Aksoy E., Karakurt Z., Agca M.C., Kocak N.D., Ozmen I., Akturk U.A., Gungor S., Tepetam F.M., Eroglu S., et al. The utility of inflammatory markers to predict readmissions and mortality in COPD cases with or without eosinophilia [Corrigendum] Int. J. Chronic Obstr. Pulm. Dis. 2016;11:417–418. doi: 10.2147/COPD.S103721.
    1. Bafadhel M., Greening N.J., Harvey-Dunstan T.C., E A Williams J., Morgan M.D., Brightling C.E., Hussain S.F., Pavord I.D., Singh S., Steiner M.C. Blood Eosinophils and Outcomes in Severe Hospitalized Exacerbations of COPD. Chest. 2016;150:320–328. doi: 10.1016/j.chest.2016.01.026.
    1. Sivapalan P., Lapperre T.S., Janner J., Laub R.R., Moberg M., Bech C.S., Eklöf J., Holm F.S., Armbruster K., Sivapalan P., et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): A multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir. Med. 2019;7:699–709. doi: 10.1016/S2213-2600(19)30176-6.
    1. Bauer T.T., Montón C., Torres A., Cabello H., Fillela X., Maldonado A., Nicolás J.-M., Zavala E. Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax. 2000;55:46–52. doi: 10.1136/thorax.55.1.46.
    1. Headley A.S., Meduri G.U., Tolley E. Infections and the Inflammatory Response in Acute Respiratory Distress Syndrome. Chest. 1997;111:1306–1321. doi: 10.1378/chest.111.5.1306.
    1. Pinto-Plata V.M., Casanova C., Müllerová H., De-Torres J.P., Corado H., Varo N., Córdoba-Lanús E., Zeineldine S., Paz H., Baz R., et al. Inflammatory and repair serum biomarker pattern. Association to clinical outcomes in COPD. Respir. Res. 2012;13:71. doi: 10.1186/1465-9921-13-71.
    1. Takala A., Jousela I., Takkunen O., Kautiainen H., Jansson S.-E., Orpana A., Karonen S.-L., Repo H. A Prospective Study of Inflammation Markers in Patients at Risk of Indirect Acute Lung Injury. Shock. 2002;17:252–257. doi: 10.1097/00024382-200204000-00002.
    1. Chen C., Shi L., Li Y., Wang X., Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol. Toxicol. 2016;32:169–184. doi: 10.1007/s10565-016-9322-4.
    1. Fremont R.D., Koyama T., Calfee C.S., Wu W., Dossett L.A., Bossert F.R., Mitchell D., Wickersham N., Bernard G.R., Matthay M.A., et al. Acute Lung Injury in Patients With Traumatic Injuries: Utility of a Panel of Biomarkers for Diagnosis and Pathogenesis. J. Trauma. 2010;68:1121–1127. doi: 10.1097/TA.0b013e3181c40728.
    1. Swaroopa D., Bhaskar K., Mahathi T., Katkam S., Raju Y.S., Chandra N., Kutala V.K. Association of serum interleukin-6, interleukin-8, and Acute Physiology and Chronic Health Evaluation II score with clinical outcome in patients with acute respiratory distress syndrome. Indian J. Crit. Care Med. 2016;20:518–525. doi: 10.4103/0972-5229.190369.
    1. Amat M., Barcons M., Mancebo J., Mateo J., Oliver A., Mayoral J.-F., Boj J.F., Vila L. Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma concentrations in patients at risk of acute respiratory distress syndrome and with acute respiratory distress syndrome: Mortality prognostic study. Crit. Care Med. 2000;28:57–62. doi: 10.1097/00003246-200001000-00009.
    1. Donnelly S.C., Strieter R.M., Reid P.T., Kunkel S.L., Burdick M.D., Armstrong I., MacKenzie A., Haslett C. The Association between Mortality Rates and Decreased Concentrations of Interleukin-10 and Interleukin-1 Receptor Antagonist in the Lung Fluids of Patients with the Adult Respiratory Distress Syndrome. Ann. Intern. Med. 1996;125:191. doi: 10.7326/0003-4819-125-3-199608010-00005.
    1. Parsons P.E., Eisner M.D., Thompson B.T., Matthay M.A., Ancukiewicz M., Bernard G.R., Wheeler A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury*. Crit. Care Med. 2005;33:1–6. doi: 10.1097/01.CCM.0000149854.61192.DC.
    1. Samanta J., Singh S., Arora S., Muktesh G., Aggarwal A., Dhaka N., Sinha S.K., Gupta V., Sharma V., Kochhar R. Cytokine profile in prediction of acute lung injury in patients with acute pancreatitis. Pancreatology. 2018;18:878–884. doi: 10.1016/j.pan.2018.10.006.
    1. Jensen J.U., Lundgren B., Hein L., Mohr T., Petersen P.L., Andersen L.H., Lauritsen A.Ø., Hougaard S., Mantoni T., Bømler B., et al. The Procalcitonin And Survival Study (PASS)—A randomised multi-center investigator-initiated trial to investigate whether daily measurements biomarker Procalcitonin and pro-active diagnostic and therapeutic responses to abnormal Procalcitonin levels, can improve survival in intensive care unit patients. Calculated sample size (target population): 1000 patients. BMC Infect. Dis. 2008;8:91.
    1. Jensen J.U.S., Hein L., Lundgren B., Bestle M.H., Mohr T., Andersen M.H., Thornberg K., Løken J., Steensen M., Fox Z., et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: A randomized trial*. Crit. Care Med. 2011;39:2048–2058. doi: 10.1097/CCM.0b013e31821e8791.
    1. Jensen J.-U.S., Hein L., Lundgren B., Bestle M.H., Mohr T., Andersen M.H., Thornberg K.J., Løken J., Steensen M., Fox Z., et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: Secondary end point results from a 1200 patient randomised trial. BMJ Open. 2012;2:e000635. doi: 10.1136/bmjopen-2011-000635.
    1. Jensen J.U., Hein L., Lundgren B., Bestle M.H., Mohr T., Andersen M.H., Løken J., Tousi H., Søe-Jensen P., Lauritsen A.Ø., et al. Invasive Candida infections and the harm from antibacterial drugs in critically ill patients: Data from a randomized, controlled trial to determine the role of ciprofloxacin, piperacillin-tazobactam, meropenem, and cefuroxime. Crit Care Med. 2015;43:594–602. doi: 10.1097/CCM.0000000000000746.
    1. Johansen M.E., Jensen J.-U., Bestle M.H., Hein L., Lauritsen A.Ø., Tousi H., Larsen K.M., Løken J., Mohr T., Thormar K., et al. The Potential of Antimicrobials to Induce Thrombocytopenia in Critically Ill Patients: Data from a Randomized Controlled Trial. PLoS ONE. 2013;8:e81477. doi: 10.1371/journal.pone.0081477.
    1. Corti C., Fally M., Fabricius-Bjerre A., Mortensen K., Jensen B.N., Andreassen H.F., Porsbjerg C., Knudsen J.D., Jensen J.-U. Point-of-care procalcitonin test to reduce antibiotic exposure in patients hospitalized with acute exacerbation of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016;11:1381–1389. doi: 10.2147/COPD.S104051.
    1. A Meier M., Branche A., Neeser O.L., Wirz Y., Haubitz S., Bouadma L., Wolff M., E Luyt C., Chastre J., Tubach F., et al. Procalcitonin-guided Antibiotic Treatment in Patients With Positive Blood Cultures: A Patient-level Meta-analysis of Randomized Trials. Clin. Infect. Dis. 2018;69:388–396. doi: 10.1093/cid/ciy917.
    1. De Jong E., van Oers J.A., Beishuizen A., Vos P., Vermeijden W.J., Haas L.E., Loef B.G., Dormans T., van Melsen G.C., Kluiters Y.C., et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016;16:819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Schuetz P., Wirz Y., Sager R., Christ-Crain M., Stolz D., Tamm M., Bouadma L., E Luyt C., Wolff M., Chastre J., et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018;18:95–107. doi: 10.1016/S1473-3099(17)30592-3.
    1. Hoeboer S.H., Straaten H.M.O.-V., Groeneveld A.B.J. Albumin rather than C-reactive protein may be valuable in predicting and monitoring the severity and course of acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new onset fever. BMC Pulm. Med. 2015;15:1–13. doi: 10.1186/s12890-015-0015-1.
    1. Bajwa E.K., Khan U.A., Januzzi J.L., Gong M.N., Thompson B.T., Christiani D.C. Plasma C-Reactive Protein Levels Are Associated With Improved Outcome in ARDS. Chest. 2009;136:471–480. doi: 10.1378/chest.08-2413.
    1. Abdulnour R.-E.E., Gunderson T., Barkas I., Timmons J.Y., Barnig C., Gong M., Kor D.J., Gajic O.O., Talmor D., Carter R., et al. Early Intravascular Events Are Associated with Development of Acute Respiratory Distress Syndrome. A Substudy of the LIPS-A Clinical Trial. Am. J. Respir. Crit. Care Med. 2018;197:1575–1585. doi: 10.1164/rccm.201712-2530OC.
    1. Song H., Zhou Y., Li G., Bai J. Regulatory T Cells Contribute to the Recovery of Acute Lung Injury by Upregulating Tim-3. Inflammation. 2014;38:1267–1272. doi: 10.1007/s10753-014-0096-7.
    1. Burnham E.L., Mealer M., Gaydos J., Majka S., Moss M. Acute Lung Injury but Not Sepsis Is Associated with Increased Colony Formation by Peripheral Blood Mononuclear Cells. Am. J. Respir. Cell Mol. Biol. 2010;43:326–333. doi: 10.1165/rcmb.2009-0015OC.
    1. Li W., Ai X., Ni Y., Ye Z., Liang Z. The Association Between the Neutrophil-to-Lymphocyte Ratio and Mortality in Patients With Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Shock. 2019;51:161–167. doi: 10.1097/SHK.0000000000001136.
    1. Ding X., Li J.-B., Liang H., Wang Z.-Y., Jiao T.-T., Liu Z., Yi L., Bian W.-S., Wang S., Zhu X., et al. Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: A secondary analysis of a cohort study. J. Transl. Med. 2019;17:1–10. doi: 10.1186/s12967-019-2075-0.
    1. Sinha P., Delucchi K.L., McAuley D.F., O’Kane C.M., Matthay M.A., Calfee C.S. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: A secondary analysis of randomised controlled trials. Lancet Respir. Med. 2020;8:247–257. doi: 10.1016/S2213-2600(19)30369-8.

Source: PubMed

3
Tilaa